THE T_1-CONTINUOUS FUNDAMENTAL GROUP OF A CERTAIN FINITE SPACE

By Karl R. Gentry and Hughes B. Hoyle, III

1. Introduction

Let X be a topological space and let $x_0 \in X$. Then $C(X, x_0)$ will be used to denote the set of all continuous loops in X at x_0. The idea of using continuous functions as relating functions on $C(X, x_0)$ to get an equivalence relation on $C(X, x_0)$ has long been in existence, and extensive studies have been made of the resulting homotopy groups. In [5], we considered using certain types of non-continuous functions as relating functions on $C(X, x_0)$. In particular an admitting homotopy relation N was defined, which in general, turned out to be a larger class of relating functions than the class of continuous functions. Most types of non-continuous functions, including almost continuous functions [1], C-continuous functions [2], connectivity maps [6], and T_1-continuous functions [4], provide an admitting homotopy relation. Also in [5], it was shown how an admitting homotopy relation N could be used to obtain a generalized homotopy group $N(X, x_0)$. The question has been raised as to an example of when one of these generalized homotopy groups is different from the corresponding usual homotopy group. In this paper we let N be the admitting homotopy relation T_1-continuous and give an example of a space X and a point $x_0 \in X$ such that the T_1-continuous fundamental group $N(X, x_0)$ is different from the fundamental group $\pi_1(X, x_0)$. That is if the relating functions between the loops are only required to be T_1-continuous, then we get a different group than if we required the relating functions between the loops to be continuous.

Throughout this paper I will be used to denote the closed unit interval with the usual topology.

2. The example

EXAMPLE. Let $X = \{a, b, c, d\}$, and let $T = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}$. Then $\pi_1(X, b)$ is not isomorphic to $N(X, b)$.

PROOF. Let \(f : I \rightarrow X \) be the continuous function defined by \(f(x) = b \) for all \(x \in I \) and let \(g : I \rightarrow X \) be a continuous function such that \(g(0) = b = g(1) \). Then since \(g \) is continuous and \(\{a, b, c\} \in T \), \(g^{-1}(\{a, b, c\}) \) is open in \(I \) and thus \(D = \{x | g(x) = d\} \) is closed in \(I \). Similarly, \(A = \{x | g(x) = a\} \) is closed in \(I \).

Define \(F : I \times I \rightarrow X \) by

\[
F(x, t) = \begin{cases}
 d & \text{if } x \in D \text{ and } 0 \leq t \leq 1/2 \\
 a & \text{if } x \in A \text{ and } 0 \leq t \leq 1/2 \\
 g(x) & \text{if } t = 0 \\
 b & \text{otherwise}
\end{cases}
\]

Then \(F \) is well-defined and clearly \(F(0, t) = b = F(1, t) \) for all \(t \in I \) and \(F(x, 0) = g(x) \) and \(F(x, 1) = f(x) \) for all \(x \in I \). We wish to show that \(F \) is \(T_1 \)-continuous.

Let \(\mathcal{U} \) be an open cover of \(X \). Then either \(X \in \mathcal{U} \) or \(\{a, b, c\} \) and \(\{b, c, d\} \) are in \(\mathcal{U} \). If \(X \in \mathcal{U} \), then an open cover of \(I \times I \) which will work is \(\{I \times I\} \). If \(\{a, b, c\} \) and \(\{b, c, d\} \) are in \(\mathcal{U} \), then an open cover of \(I \times I \) which will work is \(\{I \times I - D \times [0, 1/2], I \times I - A \times [0, 1/2]\} \). Hence, \(F \) is \(T_1 \)-continuous. It follows that \(N(X, b) \) is the trivial group.

We will now show that \(II_1(X, b) \) has at least two elements. Once again let \(f \) be the constant loop at \(b \) and define \(h : I \rightarrow X \) by

\[
h(x) = \begin{cases}
 b & \text{if } 0 \leq x < 1/5 \\
 a & \text{if } 1/5 \leq x \leq 2/5 \\
 c & \text{if } 2/5 < x < 3/5 \\
 d & \text{if } 3/5 \leq x \leq 4/5 \\
 b & \text{if } 4/5 \leq x \leq 1
\end{cases}
\]

Now \(f \) and \(h \) are loops at \(b \) and we wish to show that \(f \) and \(h \) are not homotopic modulo \(b \). To this end suppose that there is a continuous function \(F : I \times I \rightarrow X \) such that \(F(x, 0) = h(x) \), \(F(x, 1) = f(x) \), and \(F(0, t) = b = F(1, t) \) for all \(x \in I \), \(t \in I \). Let \(p \) and \(q \) be the points \(p = (2/5, 0) \), \(q = (3/5, 0) \). Then \(J = (2/5, 3/5) \times (0) \). Since \(\{c\} \in T \), \(F^{-1}(\{c\}) \) is an open subset of \(I \times I \). Since \(F(x, 0) = h(x) \) for all \(x \in I \), \(F^{-1}(\{c\}) \) contains \(J \). Let \(U \) be the component of \(F^{-1}(\{c\}) \) which contains \(J \). Then \(U \) is open and connected and since \(F \) is \(h \) on \(I \times \{0\} \), \(f \) on \(I \times \{1\} \), and \(b \) on \(\{0\} \times I \) and \(\{1\} \times I \), the only points on the boundary of \(I \times I \) which are in \(U \) are in \(J \). Let \(B \) be the boundary of \(U \). Let \(W = I \times I - U \) and let \(M = W \cup B \cup J \). Then \(W \cup B \) is closed in \(I \times I \) and since \(p, q \in B, W \cup B \cup J \) is closed. Hence, \(M \) is closed. Since \(J \) is the intersection of the boundary of \(I \times I \) and \(U \), the boundary of \(I \times I \) is contained in \(M \). Let \(Q \) be the component of \(M \) which contains the boundary of \(I \times I \). Then \(Q \) is closed and connected. Since \(Q \) is
bounded, Q is compact and hence a continuum. Since $I \times I$ is closed in the plane, Q is a continuum in the plane. Since J is a subset of the boundary of $I \times I$ and U is an open, connected subset of $I \times I$ containing J, $U-J$ is connected. Now $U-J$ is a connected subset of the complement of Q. Let \mathcal{C} be the component of the complement of Q which contains $U-J$.

We wish to show that the boundary of \mathcal{C} is a subset of J union the boundary of U. Let $x \in \text{bd} \mathcal{C}$. Then $x \in M$ and thus $x \in W \cup B \cup J$. If $x \in B \cup J$, then clearly $x \in (\text{bd} U) \cup J$. Now suppose $x \in W$. Since W is an open subset of $I \times I$, there is a disc D in the plane such that $x \in D \cap (I \times I) \subset W$. Now $x \in \text{bd} \mathcal{C}$ and thus $x \in Q$. But since D is connected and contains x and Q is the component containing x, $D \cap (I \times I) \subset Q$. Now Q contains the boundary of $I \times I$ and \mathcal{C} is a component of the complement of Q which intersects the interior of $I \times I$. Hence, \mathcal{C} is contained in the interior of $I \times I$ and thus x is neither a point nor a limit point of \mathcal{C}. Therefore, $x \notin \text{bd} \mathcal{C}$. But this is impossible. Hence, $x \in W$. Thus, $\text{bd} \mathcal{C} \subset J \cup (\text{bd} U)$. By [12, Theorem 2.1, p. 105], since \mathcal{C} is a bounded component of the complement of Q, the bd \mathcal{C} is a continuum. Let K be the boundary of \mathcal{C}. Let $L=K-J$. Then $L \subseteq \text{bd} U$ and we now wish to show that L is connected. Since $p,q \in K$ and neither p nor q is in J, $p,q \in L$. Suppose L is not connected. Then L is the union of two non-empty, mutually separated sets \mathcal{A} and \mathcal{B} with p in one of them. Say $p \in \mathcal{A}$. Suppose $q \in \mathcal{A}$. Then $K=(\mathcal{A} \cup J) \cup \mathcal{B}$. Now \mathcal{A} and \mathcal{B} are mutually separated. Since \mathcal{C} is an open subset of $I \times I$ containing J in its boundary, no point of J is a limit point of $K-J$ and no point of $K-J$ is a limit point of J except p and q. But p and q are in \mathcal{A}. Hence, J and \mathcal{B} are mutually separated. Thus, $\mathcal{A} \cup J$ and \mathcal{B} are non-empty, mutually separated sets. But this is impossible, since K is connected. Thus, $q \in \mathcal{B}$. Now suppose \mathcal{A} is not connected. Then $\mathcal{A}=\alpha \cup \beta$ where α and β are non-empty mutually separated sets with $p \in \alpha$. Then $K=\beta \cup (\alpha \cup J \cup \mathcal{B})$ where these two sets once again are mutually separated. Thus, \mathcal{A} is connected. Since J is an open subset of K, $K-J$ is closed and thus L is closed. Since \mathcal{A} is a component of L, \mathcal{A} is closed. Hence, \mathcal{A} is a continuum. Similarly, \mathcal{B} is a continuum. By [12, Theorem 3.1, 108], there is a simple closed curve Γ in the plane such that Γ separates p from q and $\Gamma \cap (\mathcal{A} \cup \mathcal{B})=\emptyset$. Let Z be the boundary of $I \times I$ minus $J \cup \{p,q\}$. Then $J \cup \{p,q\}$ is a connected set containing p and q and since Γ separates p from q, $\Gamma \cap J \neq \emptyset$. Let $w \in \Gamma \cap J$. Similarly $\Gamma \cap Z \neq \emptyset$. Let $z \in \Gamma \cap Z$. Since $z \in \Gamma \cap Z$, there is a point k in the unbounded component of the complement of the boundary of $I \times I$ such that $k \in \Gamma$ and the arc from k to z in Γ not containing.
w contains no point of J. Since J is in the boundary of \mathcal{O} there is a point $m \in \mathcal{O}$ such that $m \in I'$ and the arc from k to m in I' containing z contains no point of J. Let A be the arc in I' from k to m containing z. Then $A \cap J = \phi$ and since $I' \cap (\mathcal{A} \cup \mathcal{B}) = \phi$, $A \cap K = \phi$. But then the component of the compliment of K containing \mathcal{O} is not a subset of the interior of $I \times I'$, which is impossible. Hence, L is connected. Since $L = K - J$ and $K \subset (bd \ U) \cup J$, $L \subset bd \ U$. Hence a connected subset of the boundary of U contains both p and q.

Let P be the component of the boundary B of U which contains p and q. Then since B is closed, P is closed.

Now U was the component of $F^{-1}(c)$ containing J. Thus, no point of B is in $F^{-1}(c)$, for if $x \in B$ and $F(x) = c$, then since F is continuous at x, there is a disc E such that $x \in E \cap (I \times I)$ and $F(E \cap (I \times I)) = \{c\}$. But $E \cap U \neq \phi$, since x is in the boundary of U. Hence, $U \cup E$ is connected and U was not maximal since E must also contain a point not in U since x is in the boundary of U. No point of B is in $F^{-1}(b)$, for if $x \in B$ and $F(x) = b$, then since F is continuous at x, there is a disc G such that $x \in G \cap (I \times I)$ and $F(G \cap (I \times I)) = \{b\}$. But G contains no point of $F^{-1}(c)$ and hence no point of U. Hence, $F(B) \subset \{a, d\}$. But $F(p) = a$ and $F(q) = d$. Hence, $F(B) = \{a, d\}$. Since $\{a, b, c\} \subset T$, $F^{-1}(d)$ is closed. Similarly $F^{-1}(a)$ is closed. Since P is closed, $P \cap F^{-1}(a)$ and $P \cap F^{-1}(d)$ are closed. But $P \subset B$ containing p and q. Thus $P = (P \cap F^{-1}(a)) \cup (P \cap F^{-1}(d))$ which is a contradiction since P is connected and $P \cap F^{-1}(a)$ and $P \cap F^{-1}(d)$ are non-empty closed sets. Thus, no such continuous function F can exist and f and h are not homotopic modulo b. Hence $\pi_1(X, b)$ has at least two elements and $N(X, b)$ cannot be isomorphic to $\pi_1(X, b)$.

The University of North Carolina
Greensboro, North Carolina 27412
U.S.A.

REFERENCES

The T_λ-continuous fundamental group of a certain space

Mathematicae, 76(1972), 9—17.

