2. 초산기의 산란능력

초산일령은 부화일령에 따라 다소 달라 가을부터 겨울사이에 부화된 벡아는 빨르고, 여름에 부화된 벡아는 늦다는 경향이 있다. 일반적으로 초산일령이 빨라질수록 산란수는 많지만 경계적으로 불리한 소란이 많으므로 사료를 제공하여 초산일령을 지연시키거나 점등관리를 효율적으로 하여 되면 비교적 큰 달걀을 더 많이 생산할 수 있다. 여기서는 먼저 초산일령이 비교적 빨라 10월 벡아를 이용하여 육성기의 제한을 가하여 초산일령을 비롯한 초산지의 영향을 살펴 보겠다.

표1에서 보는 바와 같이 육성기간중 자유체제계군이 사료를 제한한 다른 계군에 비하여 빠른데 80%를 급여한 계군이 초산일령에서 11.4일, 70%는 21.4일, 60% 계군은 24.7일이 높았으며 50% 산란일령도 초산일령과 비슷한 경향을 나타냈다. 또한 산란개시후 50% 산란에 이르는 동안 자유체제계군은 3.4일이 걸렸으나 사료를 제한한 계군에서 는 2.4 2.7일이 소요되어 보다 빨리 50% 산란에 도달한 것으로 보아 초산일령을 조절하기 위하여는 육성기간중 사료제한이 보다 더 경제적 것으로 나타났다.

초산시 산란과 50% 산란시 산란을 비교해보면 자유체제계군 제한 대비 70%를 육성기간중 급여한 계군이 각각 48.6g과 49.2g 으로 다른 계군에 비하여 약간씩 높은 경향을 보였으며 초산시 계란과 50% 산란시 계란을 비교해 보면 자유체제 계란 급여한 계군에 비해 평균 189.6g, 178.9g 정도 더 무거운 것으로 나타나 결과적으로 사료섭취량은 늘어나면서도 경제적차와 적정 산란이 가벼운 달걀을 생산한 것으로 나타났다.
표 1. 초산기의 능력

<table>
<thead>
<tr>
<th>육성기 사료급여 방법</th>
<th>초산일령</th>
<th>50% 산란일령</th>
<th>초산시 난 중</th>
<th>50%산란시 난 중</th>
<th>초산시 체 중</th>
<th>50%산란시 체 중</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ~ 4 주령</td>
<td>자유채식</td>
<td>자유채식</td>
<td>149.6</td>
<td>153.0</td>
<td>47.3</td>
<td>48.1</td>
</tr>
<tr>
<td>5 ~ 22주령</td>
<td>자유채식</td>
<td>자유채식</td>
<td>161.0</td>
<td>163.7</td>
<td>47.1</td>
<td>48.8</td>
</tr>
<tr>
<td>III</td>
<td>자유채식</td>
<td>재식</td>
<td>70%</td>
<td>171.0</td>
<td>48.6</td>
<td>49.2</td>
</tr>
<tr>
<td>IV</td>
<td>자유채식</td>
<td>재식</td>
<td>60%</td>
<td>174.3</td>
<td>48.7</td>
<td>47.9</td>
</tr>
</tbody>
</table>

*성체기간중은 전체군 자유채식

표 2. 성체기의 산란능력

<table>
<thead>
<tr>
<th>구분</th>
<th>주령별</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>산란율 (%)</td>
<td>23 ~ 34</td>
<td>81.1</td>
<td>79.6</td>
<td>70.9</td>
<td>64.3</td>
</tr>
<tr>
<td></td>
<td>35 ~ 46</td>
<td>84.9</td>
<td>87.6</td>
<td>88.0</td>
<td>85.9</td>
</tr>
<tr>
<td></td>
<td>47 ~ 58</td>
<td>77.9</td>
<td>77.5</td>
<td>77.6</td>
<td>76.3</td>
</tr>
<tr>
<td></td>
<td>59 ~ 70</td>
<td>65.1</td>
<td>67.5</td>
<td>68.8</td>
<td>72.0</td>
</tr>
<tr>
<td></td>
<td>23 ~ 70</td>
<td>77.3</td>
<td>78.1</td>
<td>76.4</td>
<td>74.6</td>
</tr>
<tr>
<td>일산란량 (g)</td>
<td>23 ~ 34</td>
<td>46.0</td>
<td>44.7</td>
<td>39.7</td>
<td>35.9</td>
</tr>
<tr>
<td></td>
<td>35 ~ 46</td>
<td>51.9</td>
<td>53.1</td>
<td>52.5</td>
<td>51.1</td>
</tr>
<tr>
<td></td>
<td>47 ~ 58</td>
<td>49.9</td>
<td>49.1</td>
<td>48.3</td>
<td>47.4</td>
</tr>
<tr>
<td></td>
<td>59 ~ 70</td>
<td>43.3</td>
<td>44.2</td>
<td>44.6</td>
<td>46.5</td>
</tr>
<tr>
<td></td>
<td>23 ~ 70</td>
<td>47.7</td>
<td>47.8</td>
<td>46.3</td>
<td>45.2</td>
</tr>
<tr>
<td>사료섭취량 (g)</td>
<td>23 ~ 34</td>
<td>113.6</td>
<td>113.0</td>
<td>108.0</td>
<td>105.5</td>
</tr>
<tr>
<td></td>
<td>35 ~ 46</td>
<td>114.4</td>
<td>111.7</td>
<td>107.8</td>
<td>105.7</td>
</tr>
<tr>
<td></td>
<td>47 ~ 58</td>
<td>119.3</td>
<td>113.7</td>
<td>111.4</td>
<td>108.7</td>
</tr>
<tr>
<td></td>
<td>59 ~ 70</td>
<td>124.0</td>
<td>120.1</td>
<td>117.0</td>
<td>116.8</td>
</tr>
<tr>
<td></td>
<td>23 ~ 70</td>
<td>117.7</td>
<td>114.6</td>
<td>111.0</td>
<td>109.1</td>
</tr>
<tr>
<td>사료 요구율</td>
<td>23 ~ 70</td>
<td>2.47</td>
<td>2.40</td>
<td>2.40</td>
<td>2.42</td>
</tr>
<tr>
<td>난 중 (g)</td>
<td>26</td>
<td>55.2</td>
<td>54.7</td>
<td>52.4</td>
<td>50.7</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>61.7</td>
<td>61.7</td>
<td>60.8</td>
<td>60.2</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>67.1</td>
<td>66.1</td>
<td>65.3</td>
<td>63.6</td>
</tr>
<tr>
<td>평균</td>
<td>61.8</td>
<td>61.2</td>
<td>60.5</td>
<td>60.6</td>
<td></td>
</tr>
<tr>
<td>체 중 (g)</td>
<td>22</td>
<td>1,728</td>
<td>1,380</td>
<td>1,198</td>
<td>1,020</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1,799</td>
<td>1,684</td>
<td>1,588</td>
<td>1,503</td>
</tr>
<tr>
<td></td>
<td>58</td>
<td>1,960</td>
<td>1,763</td>
<td>1,700</td>
<td>1,621</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>1,990</td>
<td>1,725</td>
<td>1,638</td>
<td>1,551</td>
</tr>
<tr>
<td>생존율 (%)</td>
<td>23 ~ 70</td>
<td>98.6</td>
<td>95.6</td>
<td>95.5</td>
<td>96.1</td>
</tr>
</tbody>
</table>

3. 성체기간의 산란능력

산란율은 표 2에서 보여 23 ~ 34주령에서는 초산일령이 가장 높았고, 자유채식군이 81.1%로 가장 높았고, 80%를 공여한 계군이 79.6%로 나타나 초산일령이 빠른 계군이 산란율이 높았다. 그러나 35주령 이후 난 양의 경계가가 높은 시기에는 자유채식계군의 산란율이 모두 낮았는데 특히 80% 공여계군이 전체 평균 78.1%로 가장 높은 것으로 나타났으며 70% 60% 계군의 전체 평균이 자유채식 계군에 비해 낮으나 이는 경계가가 적은 34주령 이전의 산란능력이 높았던 때문이며 그 이후는 모두 사료제한계군이 높아 육성기간중의 사료재정은 반드시 필요한 것으로 나타났으며, 이것은 자유채식계군의 체중 대비 80% 수준으로 공여하였던 경우가 좋은 것으로 나타났다.

조사기간중 산란한 총난중을 산란수로 나누어 일산란량의 경우도 산란율과 비슷한 경향을 보였으며 역시 80% 공여계군의 일산란량이 47.8g으로 높았으며 자유채식계군, 70%, 60% 공여수준의 순서로 나타났다.

사료섭취량에서도 역시 제한급이계군이 모두 자유채식계군보다 적게 섭취한 것으로 나타났는데 체중에서도 육성기간중 제한급이인 계군과 동일한 양상을 보였으며 전기간을 대상으로한 사료요구율에서도 자유채식구가 2.47로 가장 높았으며 제한급이인 계군이 2.40~
2.42를 나타냈다.

난중에서의 경향은 조사한 각 주령에서 초산시 난중 및 50% 산란시 난중의 경우와 비슷하게 나타났으나 60%만을 급여한 계군은 여전히 낮은 수치를 보여 지나치게 제한시키는 경 우에는 오히려 불합리한 결과를 가져왔으며, 제중은 육성기에 제한된 경우로 인하여 제한 급여계군이 자유체계계군보다 가벼웠는데 22주령의 경우를 보면 자유체계계군에 비해 II계군은 80%, III계군은 69%, IV계군은 59%로 나타났고 성계기에 자유체계계육성기의 영향을 조사한 것을 보면 70주령에서 자유체계계군의 비 II계군은 87%, III계군은 83% 및 IV계군은 68%로 제한급여의 효과를 두려하게 볼 수 있 다.

또한 23~70주령까지의 산란기간동안 생존율에서는 육성기에 제한급여의 영향을 받은 계군들이 자유체계계군에 비해 약 3% 정도 낮은 것으로 나타났다.

4. 성성숙 조절을 위한 사양관리

조기성성숙과 난중과의 관계를 개선하기 위하여 사양관리를 사료급여방법으로 조절하여 초 산시 체중을 적절하게 유지하기 위한 성적을 살펴보기로 한다.

표 3에서 보는 바와 같이 성성숙이 늦어진 계군의 동일기간내 산란율은 빠른 계군보다 낮지만 난중은 비교적 높아가는 경향을 보여 데란 및 특란의 비율이 보면 만숙형이 주령이 증가

또한 커져 30주령에서는 조숙형에 비해 2.19배, 48주령은 1.52배, 63주령은 1.57배나 높은 것을 볼 수 있다.

또한 사료중의 CP 수준과 메티오닌 첨가가 초기난중에 미치는 효과를 표 4에서 보면 CP 수준이 높음수록 난중이 증가하는 경향을 볼 수 있어 산란조기에 영양수준을 만족시키면 높은 능력을 발휘할 수 있는 데 이때 사료섭취량도 거의 비슷하였다.

육성기간 중의 체중이 산란능력에 미치는 영향은 표 5에서 보면 채종과 난중과의 관계는 정 (正)의 상관관계를 보였지만 산란율은 채종과의 관계에서 일정한 상관관계가 없는 것으로 나타났다. 따라서 인위적으로 조절할 수 있는 채 종으로 난중을 증가시킬 수 있지만 산란율과의 관계를 고려하려면 적정한 체중을 육성기에 유지할 필요가 있는 것이다.

<table>
<thead>
<tr>
<th>성성숙형</th>
<th>산란율 (21~23주령)</th>
<th>30주령</th>
<th>48주령</th>
<th>63주령</th>
</tr>
</thead>
<tbody>
<tr>
<td>조숙형</td>
<td>87.7%</td>
<td>52.9%</td>
<td>16.9%</td>
<td>60.5%</td>
</tr>
<tr>
<td>중간형</td>
<td>70.0%</td>
<td>53.5%</td>
<td>20.8%</td>
<td>61.0%</td>
</tr>
<tr>
<td>만숙형</td>
<td>51.5%</td>
<td>55.3%</td>
<td>37.0%</td>
<td>61.4%</td>
</tr>
</tbody>
</table>

*달걀비율에 이용된 대비난중: 56.7 ~ 63.8 g

- 107 -
표 4. CP 수준과 메티오닌 첨가가 초기 난중에 미치는 영향

<table>
<thead>
<tr>
<th>처리 방 법</th>
<th>산란율</th>
<th>평균난중</th>
<th>수당 1일 사료섭취량</th>
</tr>
</thead>
<tbody>
<tr>
<td>17% CP(육수수, 대두박)</td>
<td>84.6%</td>
<td>53.9</td>
<td>104</td>
</tr>
<tr>
<td>17% + 0.1% DL-메티오닌</td>
<td>82.4</td>
<td>54.2</td>
<td>105</td>
</tr>
<tr>
<td>22% CP(육수수, 대두박)</td>
<td>84.4</td>
<td>54.1</td>
<td>105</td>
</tr>
</tbody>
</table>

*메티오닌 수준은 조건배경의 2% 수준

표 5. 체중과 산란능력과의 관계

<table>
<thead>
<tr>
<th>18주령 (체중, g)</th>
<th>산란율(%)</th>
<th>난중 (g)</th>
<th>67주령 (체중, g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.107</td>
<td>48.1</td>
<td>66.7</td>
<td>46.9</td>
</tr>
<tr>
<td>1.205</td>
<td>51.0</td>
<td>64.4</td>
<td>48.4</td>
</tr>
<tr>
<td>1.281</td>
<td>50.7</td>
<td>68.3</td>
<td>48.8</td>
</tr>
<tr>
<td>1.383</td>
<td>53.6</td>
<td>59.0</td>
<td>49.7</td>
</tr>
</tbody>
</table>

표 6. 부화시기별 산란능력

<table>
<thead>
<tr>
<th>부화시기</th>
<th>초산일령</th>
<th>초산산단</th>
<th>평균난중</th>
<th>산란수</th>
</tr>
</thead>
<tbody>
<tr>
<td>1월</td>
<td>154일</td>
<td>38.6 g</td>
<td>53.0 g</td>
<td>230개</td>
</tr>
<tr>
<td>2</td>
<td>159</td>
<td>40.4</td>
<td>55.4</td>
<td>254</td>
</tr>
<tr>
<td>3</td>
<td>160</td>
<td>40.7</td>
<td>54.4</td>
<td>245</td>
</tr>
<tr>
<td>4</td>
<td>162</td>
<td>50.2</td>
<td>53.6</td>
<td>256</td>
</tr>
<tr>
<td>5</td>
<td>178</td>
<td>50.6</td>
<td>53.9</td>
<td>253</td>
</tr>
<tr>
<td>6</td>
<td>178</td>
<td>49.0</td>
<td>52.6</td>
<td>240</td>
</tr>
<tr>
<td>7</td>
<td>169</td>
<td>48.5</td>
<td>49.6</td>
<td>241</td>
</tr>
<tr>
<td>8</td>
<td>165</td>
<td>45.2</td>
<td>51.5</td>
<td>234</td>
</tr>
<tr>
<td>9</td>
<td>159</td>
<td>41.2</td>
<td>48.0</td>
<td>218</td>
</tr>
<tr>
<td>10</td>
<td>165</td>
<td>41.9</td>
<td>49.7</td>
<td>242</td>
</tr>
<tr>
<td>11</td>
<td>155</td>
<td>42.7</td>
<td>50.2</td>
<td>233</td>
</tr>
<tr>
<td>12</td>
<td>157</td>
<td>38.7</td>
<td>51.8</td>
<td>236</td>
</tr>
</tbody>
</table>

5. 초산일령 조절을 위한 점등 관리

계절별로 부화시기에 따라 초산일령의 차이가 있는데 병과 여름(4~8월)에 부화된 벼리리는 일조시간이 감소하는 계절에 육성기에 숙하게 되어 성장속도를 저하시키기 뿐만 아니라 초산일령이 늦어지게 된다. 한편 가을과 겨울(9~3월)에 부화된 벼리는 육성기간이 자연일조 시간의 증가기간중에 숙하게 되므로 성장속도가 빨리 이루어나간다. 따라서 닭이 완전히 성숙하기 전에 산란을 하게 되므로 왜소란을 산란하게 되고 연산란수도 적게 되며 닭에게는 스트레스 요인으로서 케사 또는 난간발생이 빠르고 많아지게 된다.

자연일조제에서 육성할 경우 부화시기별 산란능력을 표 6에서 보면서 일조기간 중 증가하는 시기인 9~3월에 부화된 벼리리는 일반적으로 초산일령이 빠르고 난중이 가버리며 산란지속성이 떨어져서 경제적으로 불리하게 된다는 것을 알 수 있어 초산일령과 산란수와의 관계는 거쳐가 부(부)의 상관관계로 나타나므로 육성기간 중 시간 및 계절에 따라 적절한 점등관리를 하여야 한다.

닭에 있어서 난의 색은 성장, 성성숙, 산란능력 또는 수정능력 등에 영향을 미쳐 일반적으로 녹색이나 흰색 등의 파장이 짧은 색은 닭의 성장촉진과 사료효율저하 및 성장속도를 빠르게 하지만 수위의 수정능력향상에 효과가 있으며 파장이 긴 적색은 닭의 성장속도를 지연시키고 산란율을 향상시키지만 수정능력은 저하시키게 된다. Carson 등이 진구의 색에 따른 초산일령과 산란수 등에 대하여 조사한 표 7을 보면 백열등에서는 50% 초산일령이 159.5개로 가장 빨 란고, 녹색과 색깔로 점등하였을 경우에는 각각 161.0일, 162.5일로 편한 편이었으며 연백
표 7. 조영방법별 초산일령과 산란수

<table>
<thead>
<tr>
<th>빛의 색</th>
<th>50% 초산일령, 일</th>
<th>400일령 산란수, 개</th>
<th>폐사율, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>녹색</td>
<td>161.0</td>
<td>166.5</td>
<td>14.3</td>
</tr>
<tr>
<td>황색</td>
<td>163.0</td>
<td>158.8</td>
<td>10.4</td>
</tr>
<tr>
<td>적색</td>
<td>162.5</td>
<td>153.7</td>
<td>8.5</td>
</tr>
<tr>
<td>연 백색</td>
<td>165.0</td>
<td>157.0</td>
<td>7.2</td>
</tr>
<tr>
<td>찬 백색</td>
<td>164.0</td>
<td>167.7</td>
<td>4.3</td>
</tr>
<tr>
<td>백일동</td>
<td>159.5</td>
<td>160.9</td>
<td>4.3</td>
</tr>
<tr>
<td>적색</td>
<td>163.0</td>
<td>160.0</td>
<td>2.1</td>
</tr>
<tr>
<td>자연광 선</td>
<td>184.5</td>
<td>146.1</td>
<td>2.1</td>
</tr>
</tbody>
</table>

색과 적색에서는 165.0일, 163.0일로써 가장 늦은 편에 속하였다. 400일령 산란수에서는 녹색이 166.5개, 백색이 167.7개로 가장 높았던 것을 볼 수 있어 Harrison이 조사한 빛의 색에 따른 50% 초산일령과 유사하였는데 차이를 이용 검증했을 때 159.5일, 녹색은 163.5일, 적색은 164.0일 및 백색은 165.5일로 나타났다. 그러나 녹색과 적색의 폐사율이 14.3%, 8.5%로 백일동구의 2배이상 나타나 궁극적인 목표달성에는 차질이 예상된다. 그러나 육성기간의 점등방법에서는 광원의 색까지도 사육하는 계종에 따라 높은 산란능력을 얻기 위한 중요한 요건이 되는 것을 알 수 있다. 따라서 Shutte 등의 백색레그혼종을 이용해 점등방법이 담의 성성속, 성계생존율 및 산란능력에 미치는 영향을 조사한 결과는 표 8과 같다. 육성기간 및 산란기간 동안 점등시간은 16시간으로 고정하였을 경우 10% 산란일령은 156일, 50% 산란일령은 171일, 성계생존율은 95.0% 및 47주간 산란수는 224개였는데 비해 산란수로 필요한 시간인 11~12시간 이하로 점등시간을 감소하지 않는 한 점등시간을 독성기에 22시간에서 16시간으로 점차 감소하고 산란기간은 16시간에서 22시간으로 점차 증가시키는 점감점증법으로 점등하여도 성성속을 지연시키거나 성계생존율 또는 산란수 등에 아무런 영향을 미치지 않았다. 그러나 육성기에 점등시간을 9시간까지 서서히 또는 갑자기 감소한 후 산란기간에는 다시 점등시간을 서서히 또는 갑자기 연장하였을 경우에는 성성속을 지연시키는 효과가 있었으며, 47주간 산란수에 있어서는 육성기의 점등시간을 16시간에서 9시간으로 점차 감소한 후 산란기간에는 9시간에서 16시간으로 감자기 증가시키는 것이 230개로 가장 많
표 8. 점등방법이 초산일령 및 산란능력에 미치는 영향

<table>
<thead>
<tr>
<th>점등 방 법</th>
<th>10% 산란일령</th>
<th>50% 산란일령</th>
<th>성 계</th>
<th>47주간 산란수</th>
</tr>
</thead>
<tbody>
<tr>
<td>욕 성 기 간</td>
<td>산란 기 간</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22시간에서 16시간 으로 점차 감소</td>
<td>16시간에서 22시간 으로 점차 증가</td>
<td>156일</td>
<td>172일</td>
<td>96.7%</td>
</tr>
<tr>
<td>22시간에서 9시간 으로 점차 감소</td>
<td>9시간에서 22시간 으로 점차 증가</td>
<td>172</td>
<td>186</td>
<td>96.7</td>
</tr>
<tr>
<td>16시간에서 9시간 으로 점차 감소</td>
<td>9시간에서 16시간 으로 점차 증가</td>
<td>171</td>
<td>191</td>
<td>96.2</td>
</tr>
<tr>
<td>16시간에서 9시간 으로 점차 감소</td>
<td>9시간에서 16시간 으로 감사기 증가</td>
<td>163</td>
<td>176</td>
<td>95.0</td>
</tr>
<tr>
<td>16시간에서 9시간 으로 감사기 감소</td>
<td>9시간에서 16시간 으로 감사기 증가</td>
<td>165</td>
<td>176</td>
<td>95.4</td>
</tr>
<tr>
<td>16시간 고정</td>
<td>16시간 고정</td>
<td>156</td>
<td>171</td>
<td>95.0</td>
</tr>
</tbody>
</table>

야나.

6. 결 론

전체적인 담 능력을 보면 먼저 50% 초산일령이 140~160일 사이의 계균 초산년도의 일산란량은 초산일령이 10일 늦어질 때마다 1.68 g씩 증가하였고, 그 이후 초산계균은 10일씩 늦어질 때마다 일산란량이 1.79 g씩 감소하였으며, 사료사용량은 초산일령이 2주씩 매 0.24 g씩 감소하는 경향을 보였지만 산란초산년도에 기의 영향을 끼치지 않았고, 사료요구율면에서 150~170일 사이에서는 조금씩 감소하였으나 170~180일 사이는 비슷하게 나타났고 180일 이후에는 초산일령이 10일씩 늦어질 때마다 약 0.22 g이 더 증가하였고, 초산일령이 10일씩 늦어질 때 폐사율은 1% 정도 감소하는 경향을 보였다.

따라서 사육하는 계균에 따른 적절한 초산일령의 산출이 어렵겠지만 부화시기에 따른 철저한 점등관리로 성장속을 조절, 늘은 산란율을 유지하도록 하고, 육성기간동안 사료의 제한을 이용 체중조절로 무거운 달장을 장기간 산란토록 하는 등의 사육자가 크게 관심을 쏟지 않는 초산일령의 중요성을 입각하고 최대의 능력을 발휘하도록 하여야 할 것이다. *

복덕방

농 장 매 매

- 소 재 : 경기도 양주군 주내면 유양리 270번지 국도변
- 대 지 : 약 4,500평
- 계 사 : 총 1,000평 (9동), 고상식 채란계 계사
- 연락처 : (Tel.) 0341-2-3127