SOME PROPERTIES OF BITOPOLOGICAL SPACES

WON HUH AND YONG MUN PARK

1. Introduction

A bitopological space \((X, P, Q)\) is a set \(X\) together with two topologies \(P\) and \(Q\) on \(X\). In this paper we study some properties of bitopological spaces.

In J. C. Kelly[2], Theorem 2.7 is the generalization of Urysohn's Lemma. In this paper we prove the sufficiency condition also holds.

In section 3, when we define a bitopological space \((X, P, Q)\) to be pairwise paracompact if \((X, P, Q)\) is pairwise Hausdorff and each \(P\)-open covering of \(X\) has a \(Q\)-open nbd-finite refinement, and each \(Q\)-open covering of \(X\) has a \(P\)-open nbd-finite refinement, we prove that every pairwise paracompact space is pairwise normal.

2. Pairwise Hausdorff, pairwise regular, pairwise normal bitopological spaces

The following definition extends to a bitopological space \((X, P, Q)\) the notions of separation properties of a topological space \((X, F)\).

DEFINITION 2.1. [2]. In a space \((X, P, Q)\), \(P\) is said to be regular with respect to \(Q\) if, for each point \(x\) in \(X\), there is a \(P\)-neighbourhood base of \(Q\)-closed sets.

THEOREM 2.2. In a space \((X, P, Q)\), \(P\) is regular with respect to \(Q\) if and only if, for each point \(x\) in \(X\) and
each P-closed set P such that \(x \in P \), there are a P-open set U and a Q-open set V such that \(x \in U, P \subseteq V \), and \(U \cap V = \emptyset \).

PROOF. Let \(x \) be an arbitrary point in \(X \), and \(P \) is a P-closed set such that \(x \in P \). Then \(x \in P^c \) and \(P^c \) is a P-open set. By hypothesis, there exists a \(P \)-neighbourhood of \(Q \)-closed set \(U \) of \(x \) such that \(U \subseteq P^c \). Then, \(x \in U, P \subseteq U^c \), \(U \) is a P-open set, \(U^c \) is a Q-open set, and \(U \cap U^c = \emptyset \), i.e. there exist a P-open set \(U \) and a Q-open set \(U^c \) such that \(x \in U, P \subseteq U^c \), and \(U \cap U^c = \emptyset \). Conversely, let \(x \) be an arbitrary point in \(X \) and \(N(x) \) be a P-open neighbourhood base of \(x \). Then for each element \(W \) of \(N(x) \), \(W^c \) is P-closed and \(x \in W^c \).

By hypothesis, there exist a P-open set \(U \) and a Q-open set \(V \) such that \(x \in U, W^c \subseteq V \) and \(U \cap V = \emptyset \). Then there are a P-open set \(U \) and Q-closed set \(V^c \) such that \(x \in U \subseteq V^c \subseteq W \).

Put \(W(x) = \{ V^c \} \), then \(W(x) \) is a \(P \)-neighbourhood base of \(Q \)-closed sets.

\((X, P, Q)\) is or \(P \) and \(Q \) are, pairwise regular if \(P \) is regular with respect to \(Q \) and vice versa.

DEFINITION 2.3. [2]. A space \((X, P, Q)\) is said to be pairwise Hausdorff if for each two distinct points \(x \) and \(y \), there are a \(P \)-neighbourhood \(U \) of \(x \) and a \(Q \)-neighbourhood \(V \) of \(y \) such \(U \cap V = \emptyset \).

THEOREM 2.4. [5]. If a bitopological space \((X, P, Q)\) is pairwise Hausdorff then sets which are compact with respect to one are closed with respect to the other.

DEFINITION 2.5. [2]. A space \((X, P, Q)\) is said to be pairwise normal if, given a \(P \)-closed set \(A \) and a \(Q \)-closed set \(B \)
with $A \cap B = \phi$, there exist a Q-open set U and a P-open set V such that $A \subseteq U$, $B \subseteq V$, and $U \cap V = \phi$.

Theorem 2.6. A space (X, P, Q) is pairwise normal if and only if, given a Q-closed set C and a P-open set D such that $C \subseteq D$, there are a P-open set G and a Q-closed set F such that $C \subseteq G \subseteq F \subseteq D$.

Proof. Let C be a Q-closed set and D be a P-open set such that $C \subseteq D$. Then D^c is a P-closed set and $C \cap D^c = \phi$. By hypothesis there exists a Q-open set U and a P-open set V such that $D^c \subseteq U$, $C \subseteq V$, and $U \cap V = \phi$.

Then $U^c \subseteq D$, $C \subseteq V$, $V \subseteq U^c$, and U^c is a Q-closed set. Put $F = U^c$, and $G = V$, then there exist a P-open set G and a Q-closed set F such that $C \subseteq G \subseteq F \subseteq D$.

Conversely, let A be a P-closed set and B be a Q-closed set such that $A \cap B = \phi$. Then A^c is a P-open set and B is a Q-closed set such that $B \subseteq A^c$.

By hypothesis there exist a P open set G and Q-closed set F such that $B \subseteq G \subseteq F \subseteq A^c$. Then $B \subseteq G$, $A \subseteq F^c$, F^c is a Q-open set and $G \cap F^c = \phi$. Thus there exist a P-open set G and a Q-open set F^c such that $B \subseteq G$, $A \subseteq F^c$, and $G \cap F^c = \phi$.

In J.C. Kelly [2], Theorem 2.7. is the generalization of Urysohn’s Lemma. In this paper we prove that the sufficient condition also holds.

Theorem 2.7. A space (X, P, Q) is pairwise normal, if and only if, given a Q-closed set F and a P-closed set H with $F \cap H = \phi$, there exists a real-valued function g on X such that,

1. $g(x) = 0$ ($x \in F$), $g(x) = 1$ ($x \in H$), and $0 \leq g \leq 1$.
2. g is P-upper semi-continuous and Q-lower semi-con-
Proof. Necessity. [2, theorem 2.7]

Sufficiency. Let A and B be subsets of X such that A is a Q-closed set, B is a P-closed set, and $A \cap B = \emptyset$. By hypothesis there exists a real valued function g on X such that,

1. $g(x) = 0$ ($x \in A$), $g(x) = 1$ ($x \in H$), and
2. g is P-upper semi-continuous and Q-lower semi-continuous.

Put $U = \{x | g(x) < \frac{1}{2}\}$, $V = \{x | g(x) > \frac{1}{2}\}$. Then $A \subseteq U$, $B \subseteq V$, $U \cap V = \emptyset$, and U is a P-open set V is a Q-open set. Hence (X, P, Q) is pairwise normal.

Another necessary and sufficient conditions that (X, P, Q) is pairwise normal is in E. P. Lane [4].

Theorem 2.8. In order for (X, P, Q) to be pairwise normal, it is necessary and sufficient that for every pair of functions f and g defined on X such that f is P-lower semi-continuous and g is Q-upper semi-continuous, and $g \leq f$, there exists a P-lower semi-continuous and Q-upper semi-continuous function h on X such that $g \leq h \leq f$.

Proof. Necessity. [4, theorem 2.5]

Sufficiency. Let A and B be subsets of X such that A is a P-closed set, B is a Q-closed set, $A \cap B = \emptyset$. Define real functions $\chi_{X-A}: X \rightarrow R$, $\chi_{X-B}: X \rightarrow R$ by $\chi_{X-A}(x) = \begin{cases} 1 & x \in X - A, \\ 0 & x \in A \end{cases}$, $\chi_{X-B}(x) = \begin{cases} 1 & x \in B, \\ 0 & x \in X - B. \end{cases}$ Then χ_{X-A} is P-lower semi-continuous, χ_B is Q-upper semi-continuous and $\chi_B \leq \chi_{X-A}$. By hypothesis there exists a P-lower semi-continuous and Q-upper semi-continuous function h on X such that $\chi_B \leq h \leq \chi_{X-A}$. Put $U = \{x : h(x) > \frac{1}{2}\}$, $V = \{x : h(x) < \frac{1}{2}\}$. Then $B \subseteq U$, $A \subseteq V$, $U \cap V$
Definition 2.9. Suppose that P and Q are topologies on a set X. We say that P is completely regular with respect to Q in case every P-closed subset F of X and each point x in $X \setminus F$, there is a P-lower semicontinuous and Q-upper semicontinuous function f on X such that $f = 0$ on F, $f(x) = 1$, and $0 \leq f \leq 1$. The space (X, P, Q) is pairwise completely regular if P is P is completely regular with respect to Q and Q is completely regular with respect to P.

Definition 2.10. A subset A of X is SC-embedded (resp. SC-embedded) in X if every real-valued (resp. bounded real-valued) P-lower semicontinuous and Q-upper semicontinuous function on A can be extended to a P-lower semicontinuous and Q-upper semicontinuous function on X.

Theorem 2.11. Every P-closed and Q-closed subset of a pairwise normal space (X, P, Q) is SC*-embedded.

Definition 3.14. Let (X, P, Q) be a bitopological space. If f is a real-valued function on X that is P-lower semicontinuous and Q-upper semicontinuous, then $\{x \in X \mid f(x) \leq 0\}$ is a P-zero-set with respect to Q, and $\{x \in X \mid 0 \leq f(x)\}$ is a Q-zero-set with respect to P.

The terminology will be abbreviated as follows; a P-zero-set with respect to Q will be called a P-zero-set, and a Q-zero-set with respect to P will be called a Q-zero-set.

Let f be a P-upper semicontinuous and Q-lower semicontinuous function on X. Then, for every real number r, $\{x \in X \mid r \leq f(x)\}$ is a P-zero-set and $\{x \in X \mid f(x) \leq r\}$ is a Q-zero-set. Also, because $\{x \in X \mid g(x) \leq 0\} = \{x \in X \mid (gV_0)(x) = 0\}$, any P-zero-set is of the form $\{x \in X \mid h(x) = 0\}$, where h is P-lower semicontinuous and Q-upper semicontinuous and $h \geq \phi$, and U is a P-open set V is a Q-open set.
0. Similarly, any Q-zero-set is of the from $\{x \in X | h(x) = 0\}$, where h is P-upper semicontinuous and Q-lower semicontinuous and $h \geq 0$.

Theorem 2.12. The space (X, P, Q) is pairwise completely regular if and only if the P-zero-sets from a base for the P-closed sets and the Q-zero-sets from a base for the Q-closed sets.

Before proving Theorem 2.12, we need the following Lemma.

Lemma 2.13. For every P-zero-set F and each point x in $X \setminus F$, there exists a P-lower semicontinuous and Q-upper semicontinuous function f on X such that $f(F) = 0$, $f(x) = 1$, and $0 \leq f(x) \leq 1$ ($x \in X$)

Proof. Let F be a P-zero-set. Then $F = \{x \in X | h(x) = 0\}$ where h is P-lower semicontinuous and Q-upper semicontinuous, and $h \geq 0$. Let $x_0 \in X \setminus F$, then by definition of F, $h(x) > 0$. Put $f(x) = \min \left\{ \frac{h(x)}{h(x_0)}, 1 \right\}$, then $f(F) = 0$, $f(x_0) = 1$, and $0 \leq f \leq 1$. Furthermore, f is P-lower semicontinuous and Q-upper semicontinuous. Since h is P-lower semicontinuous and Q-upper semicontinuous, and $h(x_0) > 0$, $\frac{h(x)}{h(x_0)}$ is P-lower semicontinuous Q-upper semicontinuous. So $f(x) = \min \left\{ \frac{h(x)}{h(x_0)}, 1 \right\}$ is P-lower semicontinuous and Q-upper semicontinuous.

Proof of Theorem 2.12. Let F be a P-closed set and x be an arbitrary point in $X \setminus F$. By hypothesis, $F = \bigcap F_L$ where F_L is P-zero-set for each L. Since $F = \bigcap F_L$ and $x \in F$, there exists a F-zero-set F_{t_0} such that $F \subseteq F_{t_0}$ and $x \in F_{t_0}$. Then by Lemma 3.16, there exists a P-lower semicontinuous and
Q-upper semicontinuous function f on X such that $f(F_0) = 0$, $f(x) = 1$, and $0 \leq f \leq 1$. Then since $F \subseteq F_0$, $f(F) = 0$. Thus F is P-completely regular with respect to Q. Similarly Q is completely regular with respect to P.

Conversely, let F be a P-closed set. Then since (X, P, Q) is pairwise completely regular, for each point x_0 in $X-F_0$ there is a P-lower semicontinuous and Q-upper semicontinuous function f_{x_0} on X such that $f_{x_0}(F)=0$, $f_{x_0}(x)=1$, and $0 \leq f_{x_0} \leq 1$. Put $F_0 = \{ x \in X | f_{x_0}(x) \leq 0 \}$, then F_0 is a Q-zero set and $F = \bigcap F_{x_0}$. Thus P-zero sets form a base for the P-closed sets. Similarly Q-zero sets form a base for the Q-closed sets.

Theorem 2.14. [4]. If X is pairwise normal and if a subset A of X is a P-zero-set and a Q-zero-set, then A is SC-embedded in X.

3. Pairwise paracompact spaces

Definition 3.1. Let $\{A_\alpha | \alpha \in \Lambda \}$ and $\{B_\beta | \beta \in B\}$ be two coverings of a space X. (A_α) is said to refine (or be a refinement of) (B_β) if for each A_α there is some B_β with $A_\alpha \subseteq B_\beta$.

Definition 3.2. A refinement $\{A_\alpha | \alpha \in \Lambda \}$ of $\{B_\beta | \beta \in B\}$ is called precise if $A = B$ and $A_\alpha \subseteq B_\beta$ for each α.

Lemma 3.3. If the space (X, P, Q) is pairwise Hausdorff. Then for a fixed point p in X, and for each point $q \neq p$ in X, there is a P-open neighbourhood $U_{(p)}$ such that $q \subseteq Q\text{-}cl U_{(p)}$. Similarly there is a Q-open neighbourhood $V_{(p)}$ such that $q \subseteq P\text{-}cl V_{(p)}$.

Proof. Let q be an arbitrary point in X such that $p \neq q$. Since (X, P, Q) is pairwise Hausdorff there exist a P-open...
neighbourhood $U_{(q)}$ and a Q-open neighbourhood $V(q)$ such that $U_{(q)} \cap V(q) = \emptyset$. Then $U_{(q)} \subseteq V(q)$, $q \in V(q)$, and $V(q)$ is Q-closed. Thus $Q-cl U_{(q)} \subseteq V(q)$. So $q \in Q-cl U_{(q)}$.

Lemma 3.4. If the P-covering $\{A_\alpha | \alpha \in A\}$ of X has a Q-neighbourhood-finite refinement $\{B_\beta | \beta \in B\}$, then it also has a precise Q-neighbourhood-finite refinement $\{C_\alpha | \alpha \in A\}$. Furthermore, if each B_β is a Q-open set, then each C_α can be chosen to be an Q-open set also.

Proof. Define a map $\varphi : B \to A$ by assigning to each $\beta \in B$ some $\alpha \in A$ such that $B_\beta \subseteq A_\alpha$. For each $\alpha \in A$ let $C_\alpha = \bigcup \{B_\beta | \varphi(\beta) = \alpha\}$, some C_α may be empty. Clearly, $C_\alpha \subseteq A_\alpha$ for each α, and also $\{C_\alpha | \alpha \in A\}$ is a covering because each B_β appears somewhere; C_α is evidently Q-open whenever each B_β is Q-open. If $\{B_\beta\}$ is Q-neighbourhood-finite, then each point x in X has a Q-neighbourhood V such that $V \cap B_\beta \neq \emptyset$ for at most finitely many indices β. And the number of $\{C_\alpha\}$ such that $V \cap C_\alpha \neq \emptyset$ is less than $\{B_\beta\}$. Thus $V \cap C_\alpha \neq \emptyset$ for at most finitely many indices α, $\{C_\alpha\}$ is therefore Q-neighbourhood-finite refinement.

Lemma 3.5. Let $\{A_\alpha | \alpha \in A\}$ be a neighbourhood-finite family in X. Then:

1. $\{cl A_\alpha | \alpha \in A\}$ is also neighbourhood-finite.
2. For each $B \subseteq A$, $\cup \{A_\beta | \beta \in B\}$ is closed in X.

Definition 3.6. A pairwise Hausdorff space (X, P, Q) is pairwise paracompact if each P-open covering of X has a Q-open neighbourhood-finite refinement and each Q-open covering of X has a P-open neighbourhood-finite refinement.

Theorem 3.7. Every pairwise paracompact space is pairwise normal.
Proof. We first show that the pairwise paracompact space is pairwise regular. Let \(A \) be a \(P \)-closed set in \(X \) and \(y \) be a given point in \(X \) such that \(y \notin A \). Since \((X, P, Q)\) is pairwise Hausdorff, we find by Lemma 3.3, that each \(a \in A \) has a \(P \)-open neighbourhood \(U_a \) with \(y \notin Q-cl(U_a) \). Since \(\{ U_a \mid a \in A \} \cup \{ A^c \} \) is a \(P \)-open covering of \(X \), we use pairwise paracompactness and Lemma 3.4, to get a precise \(Q \)-neighbourhood-finite open refinement \(\{ V_a \mid a \in A \} \cup \{ G \} \). Then \(M = \bigcup \{ V_a \mid a \in A \} \) is \(Q \)-open and contains \(A \). Furthermore, because \(\{ V_a \} \) is \(Q \)-neighbourhood-finite, Lemma 3.5, shows that \(Q-clM = \bigcup \{ Q-clV_a \mid a \in A \} \) and since \(y \notin Q-cl(U_a) \subseteq Q-clV_a \) for each \(a \in A \), we find \(y \notin Q-clM \). Since \((X, P, Q)\) is pairwise Hausdorff, and \(y \notin Q-clM \), we find by Lemma 3.3, that each \(b \in Q-clM \) has a \(Q \)-neighbourhood \(W_b \) with \(y \notin P-clW_b \). Since \(\{ W_b \mid b \in Q-clM \} \cup \{ Q-clM^c \} \) is a \(Q \)-open covering of \(X \), we use pairwise paracompactness and Lemma 3.4, to get a precise \(P \)-neighbourhood-finite open refinement \(\{ T_b \mid b \in Q-clM \} \cup \{ H \} \). Then \(N = \bigcup \{ T_b \mid b \in Q-clM \} \) is \(P \)-open contains \(Q-clM \). Furthermore, because \(\{ T_b \} \) is \(P \)-neighbourhood finite Lemma 3.5, shows that \(P-clN = \bigcup \{ P-clT_b \mid b \in Q-clM \} \), and since \(y \notin P-clW_b \) for each \(b \in Q-clM \), we find \(y \notin P-clN \). Then \(y \notin [P-clN]^c \), \([P-clN]^c \cap M = \phi \), i.e. there exist a \(P \)-open set \([P-clN]^c \), \(Q \)-open set \(M \), \(y \notin [P-clN]^c \), \(A \subseteq M \) such that \([P-clN]^c \cap M = \phi \). So \(P \) is regular with respect to \(Q \), similarly \(Q \) is regular with respect to \(P \). Thus \((X, P, Q)\) is pairwise regular. We now prove that \(X \) is pairwise normal. Let \(A \) be a \(P \)-closed set, \(B \) be a \(Q \)-closed set with \(A \cap B = \phi \). Then for each \(b \in B \), \(b \notin A \). Since \((X, P, Q)\) is pairwise Hausdorff, we proved above that for each \(b \in B \) there is a \(Q \)-open set \(M_b \) such that \(A \subseteq M_b \) and \(b \notin Q-clM_b \).
Then $A \subseteq \bigcap_{b \in B} Mb$, \ \[\bigcap_{b \in B} Q \cdot cl Mb \cap B = \phi \]. Put $M = \bigcap_{b \in B} Mb$, then

$A \subseteq Q \cdot cl M$ and since $Q \cdot cl M = Q \cdot cl \left(\bigcap_{b \in B} Mb \right) \subseteq \bigcap_{b \in B} Q \cdot cl Mb$,

$Q \cdot cl M \cap B = \phi$. Since (X, P, Q) is pairwise regular, for each $a \in Q \cdot cl M$, there is a Q-open set U_a, and P-open set V_a such that $a \in U_a$, $B \subset V_a$, and $U_a \cap V_a = \phi$. Therefore for each $a \in Q \cdot cl M$, there is a Q-open set U_a such that $a \in U_a$ and $P \cdot cl U_a \cap B = \phi$. Since \{ \{U_a\} | a \in Q \cdot cl M\} \cup \{ (Q \cdot cl M) \} is a Q-open covering of X, we use pairwise paracompactness and Lemma 3.4 to get a precise P-neighbourhood-finite open refinement \{ \{V_a\} | a \in Q \cdot cl M\} \cup G. Put $N = \bigcup \{V_a\} | a \in Q \cdot cl M\}$, then N is P-open and $Q \cdot cl M \subseteq N$. Furthermore, because $\{V_a\}$ is P-neighbourhood-finite, Lemma 3.5 shows that $P \cdot cl N = \bigcup \{P \cdot cl V_a\} | a \in Q \cdot cl M\}$. Since $P \cdot cl U_a \supseteq P \cdot cl V_a$ for each $a \in Q \cdot cl M$, and $B \cap P \cdot cl U_a = \phi$, we find $B \cap P \cdot cl N = \phi$. So we find a Q-closed set $Q \cdot cl M$, P-closed set N, such that $A \subseteq Q \cdot cl M$, $B \subset N$, and $Q \cdot cl M \cap N = \phi$. Since $Q \cdot cl M$ is Q-closed, N is P-closed, and $Q \cdot cl M \cap N = \phi$, as we proved above there is a set H such that $N \subseteq H \subseteq Q \cdot cl H$ and $Q \cdot cl H \cap Q \cdot cl M = \phi$. Then $A \subseteq Q \cdot cl M \subseteq [Q \cdot cl H]^c$, $B \subseteq (P \cdot cl N)^c$ since $[P \cdot cl N]^c \subseteq N \subseteq H \subseteq Q \cdot cl H$, $[Q \cdot cl H]^c \cap [P \cdot cl N]^c = \phi$. In other word, there exist P-open set $[P \cdot cl N]^c$ and Q-open set $[Q \cdot cl H]^c$ such that $A \subseteq [Q \cdot cl H]^c$, $B \subseteq [P \cdot cl N]^c$ and $[Q \cdot cl H]^c \cap [P \cdot cl N]^c = \phi$.

Example 3.8. In a real line R, let P be the usual topology and Q be the topology generated by the open-closed interval (a, b) $(a, b \in R, a < b)$. Then (R, P, Q) is a pairwise paracom pact space.
References

Won Hui
Department of Mathematics
Pusan National University
Pusan 607
Korea

Yong Mun Park
Korea Naval Academy
Jinhae 602
Korea