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I. Introduction

During the last three decades, predicting an equilibrium of the transportation market has been
regarded as necessary for the study of many transportation problems such as evaluation of operating
procedures for urban and regional transportation systems, evaluation of traffic management in heavily
congested urban road systems, decisions regarding public transportation fares and parking prices,
evaluation of new transportation services, network design problems and so forth. This requirement
reflects an increasing concern with traffic congestion, long regarded as one of the most difficult
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problems of urban settlements. -

The research presented here is concerned with several issues that arise when such an equilibrium
model is implemented. It concerns the estimation of generalized cost function coefficients from
survey data under the hypothesis that the travel choices correspond to the assumptions of the
network equilibrium model. A maximum likelihood approach to this problem is evaluated analytical-
ly and computationally for the Chicago region.

The classical view of an economic market for a certain good involves two competitive groups: the
producers and the consumers. The behavior of the producers is represented by a supply function and
the behavior of the consumers is characterized by a demand function. By competing with each other
in terms of the amount of the good and its price, the market equilibrium is determined. In
transportation markets, the producers include road service agencies, transit operators, traffic
managers, and so on; their product may be regarded as the level of service in the transportation
system. Transportation level of service can be measured in terms of travel time; cost, convenience,
reliability, safety, comfort, and other factors.

Some of those factors are dependent upon traffic flows. Thus, the consumers, that is, the travelers
in the transportation market, seek their optimal choices in a given situation. In the short-terms, users
of the system reach an equilibrium over the network by rearranging their use of the available, but
fixed alternatives supplied by producers. These phenomena give rise to the network equilibrium
stated by Wardrop (1952) and Beckmann et al. (1956).

In the longer-term in highly congested networks, the level of service provided by the transpor-
tation producers may be improved. Then, travelers may be confronted with a re-evaluation of their
long-term habitual choices such as locations of residence, destinations, modes, and activities at origins
or destinations. In congested networks, moreover, the decision-making process may become very
sensitive, and choices other than the least-cost route may materialize. The traditional transportation
planning process does not recognize such complex feedback phenomena. The equilibrium conditions
under these circumstances goes well beyond the formulation of Wardrop (1952) and Beckmann et al,
(1956), since not only routes and their associated flows between given origin and destination, but
also modes, destinations, and locations may be re-examined by an individual user.

Several recent models such as Florian et al. (1975), Evans (1973, 1976), Erlander (1977), Abdulaal
and LeBlanc (1979), and Dafermos (1980, 1982) attempted to incorporate the effect of route costs
on other choices such as destination, mode, and so on. The appearance of these models in the
literature signalled an emergence of a new model type, namely combined urban location and/or

travel choice models.
Implementation of such mathematical models requires the values of model:parameters. Cali-

bration, or choosing these parameter values, requires certain observed survey data such as travel cost
information on each street or road, origin-destination-mode travel data, and so forth. Among the
variables required for calibrating these parameters, one may find it very difficult to observe or survey
travel cost data. Furthermore, the calibrated parameters estimated from these survey data may not
reproduce observed behavior. The estimation procedure itself may not converge if the parameter
estimation of interest is separately carried out from the model that produces the travel cost data,
even though one repeats the process.

This research aims at reducing inconsistencies inherent in traditional approaches by calibrating
the model parameters directly from the model that solves the equilibrium network problem. The
model used for this study was the combined mode and route choice model (CMR). The reason of
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choosing the model was that the CMR model among many other combined models is the simplest to
solve the research problems and the most directly related to generalized travel cost. The results
obtained through this research may be readily applied to other models that have not been used.

In order to accomplish the overall objectives of this research, the following assumptions, models
and data are used.

1. User choice behavior regarding mode and route choice is based on two major assumptions: (a)
user-equilibrium choice of routes; (b) dispersion of mode choices, given by the entropy value.

[\

. The generalized cost function is defined as a linear function of the cost components. In parti-
cular, automobile travel time and operating cost are variables to be determined endogenously,
while the other cost components are fixed.

3. The model parameters estimated in this study are: (a) the generalized cost coefficients; (b)
the dispersion factor which is equivaient to the Lagrange multiplier associated with entropy
constraint.

4. Constants required for solving the model are: (a) total number of trips, which is related to the
proportion of work trips in the peak-hour; (b) auto occupancy factor; (c) value of the entropy
function; (d) prior probabilities.

5. The trip table surveyed in 1975 for the Chicago region is used for estimating the parameters and
evaluating the goodness-of-fit of the model. g

6. Algorithms used in this study are: (a) Evans (1976) algorithm for solving combined urban
location and travel choices model; (b) grid search for the maximum likelihood estimation of
model parameters.

1. Network Equilibrium

The concept of an equilibrium in an urban transportation network stems from the dependence of
link travel costs on link flows. Under the assumpticns that (1) the number of travelers between a given
origin and a given destination is known, and (2) these origin-destination pairs are connected by
several possible routes, one problem of interest is to know how these travelers will be distributed
among {he possible routes. If all travelers choose the same minimum cost route in traveling fom an
origin to a destination, congestion would develop because the capacity of the road system cannot
cope with such a high travel demand. Some travelers may use an alternative route so as to avoid the
congestion. The alternative route can, however, also be congested, and so forth. This situation will
continuously adjust until no user has any incentive to alter his travel route. The resulting solution is
called a netwo.k equilibrium.

In the transportation literature, the flows which satisfy ihe above conditions are said to be a user-
equilibrium or user-optimal flow pattern. The mathematical expression equivalent to user-equilibrinum
can be stated as follows:

{P1) For all iel,je],reRy;.

(Cr (h)— uij)hr = 0 (1)
C, (h)——-u;j >/ 0 (2)
EZ b, —Dyw) = 0 3)

reR;



4“4 TRSK JOURNAL VOL.4 NO.]

hy >0 ' @
uj > 0 (5)
where c, (h) . = travel cost from i to j by route r
u;; = travel cost associated with a given O-D pair G,
h, , reR;; = traffic flows fromi to j on route r

D;; () total travel demand between i and j

The equations (1) and (2) represent Wardrop’s user-equilibrium principle, requiring that (a) travel
costs for all route with h, >0 arethe same and equalto u;; and (b) those costs are Iess than or
equal to the ones for any route with zero flows. The fact that the total flow among the different
routes between any O-D pair (i, j) should be the same as the total demand D;;(u) which in turn
depends upon the congestion in the network through u;; is seen in (3). For the fixed demand case,
D;; is assumed to be constant. The remaining equations (4) and (5) show that both flow and cost
should not be negative.

An equivalent optimization problem for equations (1) to (5) was first formulated by Beckman et
al. (1956), based on their observation that the optimality conditions to this problem correspond to
the user-equilibrium pattern. Although they considered the variable demand case in which the travel
demand is endogenously determined by equilibrium travel costs, we shall only give attention to the
route choice problem for fixed demand. Their optimization problem is then:

(P23 Minimize %E, J :a S, X)dx . (6)
subject to:

ZrPijr = Pij for all 1,] (7)

Piir > 0 ®

and definitional equations:

Va = XirPijr 6., T for all a )

In spite of its simple structure, this formulation has been the genesis of network equilibrium
models which can be solved by flexible and powerful optimization techniques. In order to examine
whether the optimality conditions of the equivalent mathematical programming problem satisfy the
Wardrop’s user-equilibrium principle, the Lagrangian is constructed:
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= 7}\_2 .f:),as (x) dx+2uuu ( Pl] _erijr)

(10)
Zur ijr ur
The necessary conditions for the equivalent optimization problem may be expressed by:
oL 1
aPijr TZaSa (va) arT ul] 1}jr 0 ( )
and Pij,f)ij, =0 (12)
If P;;, >0, which implies 6;;, = 0
(13)
Sa (Va) 5ar - u;; = 0
If P;;, =0 , which implies 6;;; » 0
(14)

Ea Sa(va)aar - Ujj; >/ 0

Therefore, equations (13) and (14) satisfy our definitions of user-equilibrium conditions.

OI. Parameter Estimation of the Combined Mode and Route Choice Model

1. Combined Mode and route Choice Model

The period for which urban networks are typically analyzed in urban transportation is the morning
or afternoon peak-demand period. During these times, most trips cannot be easily avoided because of
the home-to-work purpose for which they are performed. As a first approximation, then, the number
of trips between each origin and destination (O-D) pair may be regarded as fixed. Some of these trips,
however, may not be conducted over the road network but on alternative modes of transportation,
such as public transit. This section describes a network equilibrium model in which the network
includes both automobile and transit modes. The solution, therefore, includes the flow of transit
patrons between each O-D pair in addition to the equilibrium vehicular flow pattern over the road
network. The problem is referred to as the combined mode and route choice problem (CMR).

In the present context, assume that some of the network O-D pairs are connected by transit. The
level of service offered by the transit system is independent of either the automobile flow or the
transit patronage on the assumption that the transit capacity is large enough so that no congestion
effects occur on the transit routes and the schedule is determined to accomodate the worst delays.
The level of service is defined by variables such as travel time, transit fare, and some other fixed costs.
For this purpose, the transit level of service between O-D pairs is summarized by some fixed terms.

Most traditional approaches to this problem assume that only travel time is taken into account to
measure the level of service of those modes. This is urirealistic in cases where other factors such as
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fares, out-of-pocket money cost, parking cost, walking time to a station, transit feeder service, and so
on are important. Thus, define the generalized cost incurred in traveling as a weighted sum of the level
of service variables of each mode. In addition, for consistency, both automobile and transit flows
should be expressed in terms of persons per unit of time. Since the road network is analyzed in terms
of automobile flows, a vehicle occupancy factor must be used to convert person flow to vehicular
flow over this network.

Under the assumptions made in the previous statements, one may formulate a mathematically
equivalent optimization problem in accordance with Beckmann et al. (1956) which is:

L R .va
[CMR]  Minimize 71 EZ“T j;’ Sa (X)dx + ;3P i J +

Te [Za% f:aka(x)dx + ZiZPi iy I+

(15)
73 (ZiZ; PinWin  + Zi2;Pije iy J
snbject to:
E Pijm = Pij fOI' all l,] (16)
m£M
v h, = pi; T/R -+ F;; for all i,j (17)
rERij
~Zijm Pijm (00 Qijm) 3 S (18)
In addition, the definitional constraints:
Vo = Xijeh, 0,, for acA
(19)

Pijmshy 3 0 for all i,j,m,r

where Qi;n = apriori probability of a trip from i to j by mode m
Piw = proponrtion of highway person trips fromitoj
P;;. = proportion of transit person trips from i to j
P ;.. = number of highway vehicle trips on route r

W;n = terminal time of auto driver and passengers

F;; = truck trips in auto equivalents fromitoj
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;5 = fixed transit travel time
;0 = fixed transit fare
w;; = fixed out-of-vehicle time for transit

(e.g., headway, waiting time, excess time)

8, = .1iflink alies onroute r
0 Otherwise
R = (Auto drivers +auto passengers) [ auto drivers
S, = in-vehicle travel time on link a by highway
k. = operating cost on link a by highway
P;; = fixed proporﬁon of person trips fromito j
Pi;m = proportion of total trips from i to j on mode m
Pijmr = proportion of total trips fromitoj by mode m on route r
'S = observed entropy value
T = total number of person trips in peak hour

Y1727~ are parametersto be calibrated

The model hypotheses used to formulate the above problem are:

1.

all mode and route combinations from origin to destination which are selected have equal-
travel costs

2. no unselected combination has a lower travel cost

3.

deviation from the minimization of travel costs is characterized by the entropy function

This problem is the multimodal version of Wardrop’s first principle. The basic assumptions under-

lying this formulation are:

1.

2

there is more than one mode

_travel costs are independent of flows by other transportation modes (i.e., no interaction

between modes)

. the link congestion functions by a mode m for individual links are separable. In other words,

the cogested travel cost by a mode m, $,,(V,,), for each link depends only upon the total
flow by that mode, v, , on that link (i.e., no interaction between link flows)

The Kuhn-Tucker optimality conditions for the constrained nonlinear programming problem give:

(L) inCpi;n/a:5n) + 1 +%Uijh + 75 Wi +4;; =0 for pijr > 0

(/) 1n(pi;e/qije) + 1+ 717550 +72 e

(20)

+7rs win + 2;5 = 0 for Pijt >0
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Tl(R/r) Za Sa (Va)aar + rz(l/T)Zaka(va) 5ar - Uijh = O fOl" hr > 0 (21)
and constraints (16) — (18)
where A4;; = aLagrange multiplier associated with (16)

13 ]

Cijm : the generalized cost function by modes, is defined as:

Cije = 71 tijn + ro Kijn + 73 Wiy for all i,j (22)
Ciso =71 %ije + 728450 + 73 @5, for all i,j (23)
where C;;n = generalized travel cost by automabile
Ci;¢ = generalized travel cost by transit

ti,ih = Za Sa(va) 6ar for reRi.im with hr > 0

kijh Z_Za ka(va) 5ar for reRiim with hr > 0

# = areciprocal of the Lagrange multimplier associated with the constraint (18)

2. Calibration of the Lagrange Multiplier

The Lagrange multiplier can be calibrated by using the monotonicities of F and G which are
defined in (A-1) and (A-2) of Appendix respectively. In this section, we consider how to estimate
directly from problem (CMR) in (A-3). There are two relevant cases:

1. The estimate of F,?, is available

2. The estimate of G, @, is available

Consider the case when the estimate of F, the sum of integral of link costs, is available from base
year data. Wilson (1970) proposed a kind of balancing factor approach when the associated travel
cost is fixed. In gravity-like models, that approach converges to a stable solution under mild
conditions. In one of the earher calibration methods in the gravity models, Evans (1971) considered
a numerical method for finding the value of y for given mean travel cost. He first considered the
plausible range of the mean travel cost in which F (M) =/l<;is satisfied. He used a Newton method
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after the cost function is expanded in a Taylor series about u = 0, to update the value of u. In this
method, we are required explicitly to evaluate the derivative of the cost function. Havihg the new
u, the gravity model is reestimated, resulting in the updated mean travel cost. The process is
continued until the prespecified convergence is satisfied. Similar ideas can be found in Hyman (1969)
and Wagon and Hawkins (1970).

Nguyen (1977) showed that, assuming the underlying system is governed by an equilibrium route
choice model, the link flows, v,, are uniquely determined by the equilibrium cost. However, the
route flows are not unique. Using his model, one may compute F and calibrate the traditional gravity
model to obtain . If all of the link flows are availalbe from a survey, hence F, one can determine
the equilibrium travel cost and use the Nguyen (1977) model to obtain an estimate of F. The
calibration of u is followed by the balancing factor approach.

A second approach to obtain u has been proposed in Erlander and Stewart (1978) when the
estimate of G, G, is available. In their model, the observed travel demands are required. Then the link
flows can be computed by the equilibrium solving algorithms such as Evans (1976), LeBlanc (1975),
and so on. Using the link flows, one can easily compute F and G. The balancing factor method is
again used to estimate the value of u from an estimate G. The aforementioned methods have been

studied to reproduce the trip O-D matrix.

Boyce et al. (1983) suggested using the Newton-Raphson method to calibrate u. By obtaining
approximate first-order derivatives from the optimality conditions, they attempted to update the
iterative values of u. This process consists of an iteration between the estimation of and the solution
of the combined model. A convergence proof was not given. For this research, a similar idea has been
adopted. However, rather simplé line search algorithmis are considered, as introduced in next section;
Empirical results for the Hull City network with two cost components in defining the generalized cost
function have been reported in Boyce et al. (1983).

The following section concerns the parameters, u, 7 in the generalized cost function defined in
(22) and (23). The maximum likelihood estimation method is defined, and solution algorithms for
finding the maximum likelihood estimates of both g and v are suggested.

3. Maximum Likelihood Estimation

“In this section, we shall present procedures which can be used to estimate the unknown parameter,
including the generalized cost coefficients and the dispersion factor in the combined mode and
route choice models introduced in the Section 1. Two basic techniques are available:

(1) least squares estimation

(2) maximum likelihood estimation

The choice of an estimation method depends upon the characteristics of data, the structure of the
sampling design which generated the date and prior knowledge of the system being considered. It is
very difficult to make a direct c'ompariscm between these methods, because there is no general
agreement on which method is more appropriate in a given situation.

One principal task of implementing the CMR is to estimate. P;.  and v, which are the trip

iim
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proportions from origin i to destination j by mode m and link flows, respectively, for given parameter
values. In other words, the {p;;,} and {v,} are now functions of parameters which are assumed
to be unknown, provided the link costs and hence route costs are characterized by given cost
functions in the objective function. The parameters such as vy,, ¥2, 73, and u therefore should be
calibrated in order to realize the CMR. ‘Calibration’ as used here denotes finding the best estimates
of the parameters of the model. Calibration and testing require survey data which were available from
a survey carried out by the CATS in 1975.

In the course of this study, solution methods appropriate for the bilevel programming problem
(BLPP) have been applied. The BLPP is defined as solving a hierarchy of two optimization problems
where the constraint region of the first level is determined implicitly by the solution of the second
level. In other words, when this formulation is applied to the present research problem, the upper
level problem represents a maximum likclihood estimation over unknown parameters, while solving
the CMR defines the second level probiem.

Under the assumption that the sample data are randomly and identically selected, the joint density
probability function may be given by the multinomial distribution:

N!

—_— .. ‘s Diim
Tirm Mia] Pijn @71 @4

P{nijm} =
subject t0: 3i;a N =N, and 255, pijn @) = 1

where N, = observed trip frequencies from i to j by mode m
P{n;;n} = joint probability of {n;jn}

Pijm (@) = probability to be estimated corresponding to the unknown parameters, 6

N total sample size

Taking the logarithm of equation (24), we obtain a log likelihood function as defined in the

previous section.

L(#) = Zijm Dijm 1IN Pijm@ + In W

NI (25)
n

where W=
T

ijm Dijm |

Disregarding the constant term,

L) = ZijmNijm 1D Dijn (0 (26)



ARTBRGE HOE T80 51

Dividing by the total sample size N, we obtain

LO)=Zijn Pijm 10 Pijn(®) 27)

which has a similar form to the (negative) entropy function used in the constraints of the CMR.
The unknown probabilities P, (8) are given by [CMR]. Thus, the equivalent mathematical

formulation can be expressed as:
(MLE1):

M?x L) = Zijm Pijn 10 Pijnly) (28)
subject to:  y ¢ Q)

where Pijn(r) solves:

Min F{(p,v;7 ! (29
,VEX :

and

X = {(p,v); {pijm} and {v,} are feasible to the CMR3 } (30)
Q={7riZkrxk=1 and 7y, )0 forall k} @31

The vector 0 is defined as an scalar product of the vectors, vy and . Since ¥ is a normalized vector,
then 6 sums to u. This definition is convenient when we wish to examine the effects of each cost
component separately from y. It should be noted that the M is a scaling factor determined in part by
the entropy constraint.

As an alternative formulation, Boyce et al. (1983) have the equivalent formulation to the problem

(MLE1):

(MLE2): Ming — Zijn Pijm 10 Pijn(©6) (32)

subject to:
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ijm €X (—Ulm(e))
Pijm (0) = pyj dij £ : )

2k Qiseexp (-Us (0))D (33)
{ Pijm } e X
where Uism = #Cijm and taking 6 = py
Ci;m Wwasdefined in (22) and (23)

Difficulties arise when one deals with the constraint set X which is non convex because of the
nature of the logit-type demand function. The logit function is neither convex nor concave with
regard to the parameter 6. Thus the set covering the logit function, may not be generally convex,
even if the set itself is closed and bounded. For these reasons, it seems very difficult to find global
solutions to the equivalent optimization problem. Of important interest may be the structure of cost
components which tends to be monotonic corresponding to 6. In such cases, we may search for the
location of local minima in the vicinity of the good initial starting point.

In developing a systematic procedure to find a (local) optimum value for § which also maximizes
the likelihood function, we should take into account the fact that some cost functions are not
differentiable so that we may not incorporate the class of gradient methods. The best way in this
cases may be to develop a systematic procedure which requires only function evaluations (i.e., like-

lihood function). Under such circumstances, a kind of line search algorithm is proposed. The next
section deals with such algorithms in more detail.

4. Solution Algorithms

Many early methods which have been suggested for minimization were developed based on ad hoc
ideas without much theoretical background. Most methods require only the evaluation of the
objective function. If the problem is in few variables, however, it is likely that some sort of repeated
bisection in each one of variables could be tried so as to establish a region in which the minimum
point exists. Then an attempt might be made to reduce the area of this region systematically.

Among many variations of this idea, the alternating variables method has been applied to certain
cases. In this method, on iteration n (n = 1, 2, ...., N), the variable x, alone is changed in a trial to
reduce the objectivve function value, and the other variables are kept fixed. After iteration k, when
all the variables have been changed, then the whole cycle is repeated until convergence is obtained.
One possible improvement that has been used in this research is to make a change in each coordinate
direction which reduces the objective function value as much as possible. The method mentioned
here may have several weaknesses such as (1) inefficient and sometimes unreliable performance; 2)
oscillatory behavior; (3) no profound theoretical background. In additon, it ignores the possibility
of interaction between the variables.
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Some substantial progress has been made to the above-mentioned method in such a way that the
points at the beginning and end of a cycle determine a line along which better progress might be
made. Thus, if a provision is made for searching along this line, a more efficient method might result,
This idea gives rise to Hooke and Jeeves (1961), the DSC method by Swann (1964), Powell’s (1964)
conjugate-direction algorithm, and the simplex methods of Spendley et al. (1962) and Nelder and
Mead (1965).

The direct-search strategies for generating a sequence of improving approximations to the solution
are based simply on comparisons of function values; generally, but not always, the methods are
heuristic in nature. However, Powell’s (1964) conjugate-direction method might be exceptional.,
When these methods are incorporated, there are some advantages that result in a very wide range of
applications.

One advantage of these methods can be found when the objective function is not continuous.
Thus, they are effective when differentiation is impossible. In such cases, gradient-based methods can
prove to be inefficient or even ineffective. Another advantage of the use of these methods is that
they require less preparation than the gradient methods. Furthermore, bacause of their lack of
assumptions about the objective function, they are often more useful than gradient methods. This
does not mean that they are superior to the gradient methods; however, one should not ignore them
from a practical point of view. They usually aim at producing a good solution rather than an optimal
one, with the hope that the good solution approximates the optimal.

Because there is lack of a proof of cbnvergence, in contrast to the methods that have a mathe-
matical basis for their convergerice, one may not give rigorous convergence criteria. In that sense,
they are less reliable than methods making use of derivatives.

An alternating variable method has been used for ihe calibration of the Chicago network. The
value of the likelihood function defined in (27) is reduced on every iteration, which usually implies
that the stationary point turns out to be a local minimum. Additional evidence of convergence is a
decreasing residual that is defined as:

Qn = x" — xn-1 . (34)

If Qn goes to zero, then it may be possible to make statements about the convergence.

IV. Computational Results

This chapter summarizes computational results of estimating parameters that are required in order
to implement the combined mode and route choice model. The networks used for this research were
the Chicago sketch planning network described below and the Hull City network that has been used
by Nguyen (1974) for testing his network equilibrium model.

1. Network Representation
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Sketch planning is a phase of the planning process that is designed to increase both the responsive-
ness and the efficiency of transportation planning (UMTA, 1979). It has several beneficial features
such as: (1) the preparation of data is relatively simple, compared with conventional planning tools in
which large efforts are made for more detailed analysis, with the hope that the evaluation results are
proportional to the level of effort; (2) computer operation is relatively inexpensive; (3) the outputs
are relevant and meaningful to decision-makers in the sense that conventional planning tools often
require much interpretation of the results before they are useful.

Eash et al. (1984) describe an effort to construct a sketch planning network for the Chicago
region. The network and zone system in that sketch planning network has been aggregated from
CATS’s 1,797 zone regional system. Each sketch planning zone corresponds approximately to nine
regional zones, and range in size from nine to thirty-six square miles, resulting in a 317 zone system.
The network consists of roughly 1,250 bidirectional arterial and freeway links. Each zone centroid
is located at the center of a zone and is connected to adjacent zones by at least two, but no more
than four arterial links. Freeway interchanges are coded at most points of intersection with arterial
links and as close as possible to their locations. The zone system of the sketch planning network is
given in Figure 1.

2. Generalized Cost Function

The concept of a cost function in transportation planning has been perceived as the core of the
analysis of travel demand. Accordingly, transportation cost functions have been estimated for various
modes with the objective of describing the performance of the corresponding technology. In spite
of evident changes in transportation technology, most cost functions that have been used in past
years do not take account of such changes.

This section is concerned with formulating the cost function that underlies an individual’s choice
between automobile and public transit in a manner consistent with the hypothesis that the travel
choices are described by network equilibrium model. The generalized cost that has widely been used
in practice is a weighted linear sum of attributes such as travel time, money cost, access time, waiting
time, parking cost, and so on. The generalized cost function used in the Chicago network is defined
as:

Cin=r1tijn +rakijn + rawyn for all i,j (3%)

Cije = r17ij¢ T 72855¢ + 7wy for all i,j (36)

where

Cijn = the generalized cost of travel from i to j by auto
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Figure 1.

Sketch planning zone system for the Chicago Region
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the generalized cost of travel from i to j by transit
auto in-vehicle travel time in minutes

auto operating cost, including parking fee, in cents
auto access/egress time in minutes

transit in-vehicle travel time in m‘ixvlutes

transit operating cost in cents

transit access/egress time in minutes

Y1 17273 Aare coefficients to be estimated

The transit cost terms are considered to be fixed, as given from CATS data base. The auto fixed

cost includes terminal costs such as parking cost at each origin and destination. Auto in-vehicle travel

time and operating cost are functions of link flows, and hense, route flows. For example, auto travel

time is computed by the FHWA congestion function which is defined as:

Sa = te [ 1.0+ 0.15(va/m)*) 37
where t.o = travel time on link a with zero flow
v, = flowoflink a
m, = capacity of linka
S, = travel time on link a with flow v,

Auto operating costs are estimated by the regression analysis, using the CATS (1978) data base as:

k, = (8.07 —4.9148z + 2.15152% — 0.40686z> + 0.027493z%) d, (38)
where k, = auto operating cost on link a in cents
z u, — 2.5
15
where u, = travel speed on link a in miles per hour
d, = travel distance in miles
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The auto operating function k, has been rederived so as to preserve an increasing function with
respect to link flows (see Figure 2). Compared with values estimated by Chicago Area Transportation
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Study (CATS) in 1978, the values below 35 miles per hour are similar. However, the values for above
35 miles per hour decrease slightly, while the values of CATS function increase. One basis for the
use of new auto operating function can be found in Sanders and Reynen (1979) who estimate auto

fuel consumption by speeds. More detailed information related to the operating function is given in

Boyce et al. (1981).
Another computational issue can be raised in defining the auto operating cost term in the objective

function as introduced in (15). Since we should take the integral of k, with regard to link flow v,,

some derivational effort is needed. The explicit function form is given as:

Safk, dx =3, d, {8.9249v, —5.4777 (/8D A
+2.1449(1,/8)*B—0.3522(1,/B)*C+ 0.02(1/8)*D}

where

t

a——--—43‘;
g = 0.15¢t,,
T 4d,mf
(174)
r=Casp) Y
1 1 r2+rx~/2+x2.
A=—— (= In(——XtT o -1
r*y/% { 2 n(rz—rx«/z-i-xz)_*—tan
X 3
B= {———— 4 —
{ 4t (rt +x*) + 4rt Al
X 7
c=1 8ri(rt+x*)? +8_r‘- Bl
D= ( X 0 _ ¢

12x*(rt+xt)? + 121t

and Xx =V,

3. Computational results for the Chicago Region

As mentioned before, we have adopted the alternating variable method as a method of solving the

r2

rx+/ 2

=X

2

}

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)
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Figure 2. Automobile operating cost function

equivalent BLPP defined in the section III. About five cycles were completed, where a cycle is
defined as the complete evaluation of one variable while other variables are fixed. As shown in Table
1, the initial starting point was obtained from the previous values estimated in Chon (1982). the
value of the dispersion parameter was 1.1527x10?  Corresponuing likelihood and estimated entropy
values were 8.7997 and 8.7750, respectively. The observed entropy value is 8.7551.

In the second trial, the value of 8, was reduced about 20%. Then, the resulting entropy value is
increased because the 8 value was decreased. The resulting likelihood value also increased at this
point. Thus, the next trial point was chosen in the opposite direction, resulting in a better solution
in terms of value of the likelihood function. In order to improve the likelihood function value as
much as possible, another point that was increased as much as 50% of the initial starting point was
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Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

where

1
02
04

MLE

Table 1. Estimation results for the Chicago network

64
(x1072)

03227

0.2582
0.3873
0.4841

0.3873
0.3873
0.3873
0.3873
0.3873

0.3873
0.3873
0.3873
0.3873

0.3873
0.4841
0.2743
0.6455

0.3873
0.3873
0.3873
0.3873

= Uur

= HT2

= HTs3

P
(x1073)

0.0703
0.0703
0.0763
0.0703

0.0703
0.1406
0.1561
0.2109
0.2812

0.2109
0.2109
0.2109
0.2109

0.2109

02109 . -

0.2109
0.2109

0.2109
0.2285
0.2812
0.1406

—Eijmﬁijmlncpiim)

—ZijmPijm 1n(pi;m)

03

x107)

0.9060
0.9060
0.9060
0.9060

0.9060
0.9060
0.9060
0.9060
0.9060

0.9060
1.1780
0.6342
0.3624

0.6342

70,6342

0.6342

0.6342

" 0.6342

0.6342
0.6342
0.6342

MLE

8.7997
8.8009
8.7993
8.8000

8.7993
8.7946
8.7942
8.7937
8.7958

8.7937
8.8067
8.7911
0.8076

8.7911
8.7912
8.7936
8.7931

8.7911
8.7908
8.7925
8.7935

59

8.7750
8.7829
8.7669
8.7553

8.7669
8.7576
8.7551
8.7468
8.7355

8.7468
8.7141
8.7939
8.8605

8.7939

"8.7801

8.8095
8.7600

8.7939
8.7902
8.7777
8.8107
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tried. However, the point failed to find the smaller value of the likelihood function. This terminates
the first cycle by going back to the best point that has been obtained.

The second cycle was performed by varying 8, for fixed values of 8, and 0 3. The first trial point
was chosen by increasing 6, by 200%. Since this point improved the likelihood function, the next
trial point was also selected in the same direction this subsequent point also produced a better value
of the likelihood function. Again, a further search effort was made in that direction until no improve-
ment in that function was obtained. The second cycle stopped at that point.

This process was continued after the second cycle until no better points were found. Since each
point represents a: least four iterations of Evans’ algorithm, the computational efforts are quite inten-
sive when one implements the procedure in a large-scale network like the Chicago sketch planning
network. Further fine searching is documented in Table 4.

Table 2, summarizes the results associated with the best point obtained so far. The values are
120%, 300%, 85% of the initial values of 6,, 6,, and 65, respectively in CASE 2 denoted as the
(local) minimum without consideration of the entropy constraint. Corresponding’s are changed as
much as 120%, 370%, and 86% in the (almost) active CASE 3. In these last two cases, the coefficients
of modal operating cost are greatly increased, evidently because of the rederivation of the auto
operating cost function so as to retain the convexity with regard to link flows. Thus, the coefficients
of modal fixed terms, such as access/egress times for both modes, are relatively reduced.

Since the model implicitly determines the travel costs according to the concept of the network
equilibrium, we may see the changes in the cost structrues associated with each parameter set. Table

Table 2. Final estimates for parameters in Chicago network

) 04 0, 03 H
(x107) x107) (x107%) (x107) MLE S
CASE 1I: 3227 .0703 .9060 11.527  8.7997 8.7750
( .2485) ( .0541) ( .6974)
CASE 2: 3873 2109 7701 1.3684  8.7910 8.7676
( .2830) ( .1542) ( .5628)
CASE 3: 3873 2600 7750 1.4223  8.7916 8.7579

( 2723) ( .1828) ( .5449)

where CASE 1 isrepresented by the initial starting point
CASE 2 isrepresented by the local minimum

CASE 3 isrepresented by the local minimum of the optimization problem
constrained by an entropy function

Note that (. ) denotes the estimated coefficient (i.e., ¥) of the generalized cost function.
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value of in-vehicle time (1) = (y,/7,) 60

value of excess  time (2) = (73./7r2) 60.

Table 3. Travel cost structure of the Chicago network

(CASE 2)
Criteria

Estimated entropy
Likelihood function
Modal Choice (%)

Mean travel cost by components

Travel time (min)

Money cost (cent)
Access/eggress time (min)
Generlized cost

(CASE 3)
Criteria

Estimated entropy
Likelihood function
Modal choice (%)

Mean travel cost by components

Travel time (min)
Money cost (cent)
Access/egress time (min)
Generalized cost

AUTO

7.4228
7.4388
82.890

31659 °
32.725

4954
17.717

AUTO

7.3888
7.4447
82.556

34920 °
32.263

4.909
18.411

TRANSIT

13449
1.3522
17.110

31.671
56.752
17.659
26.480

TRANSIT

1.3692
1.3469
17.444

31.967
56.229
17.419
26.015

61

3 summarizes those values. In the results of CASE 2 and CASE 3, the values of time are $1.10/hour
for in-vehicle travel time and $2.19/hour for access/egress in CASE 2 and $0.89/hour and $1.78/hour,
respectively, for the CASE 3. Each value of time has been computed as:

(47)
(48)

TOTAL

8.7677
8.7910
100.

TOTAL

8.7579
8.7916
100.
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6,
(x 107%)

( .3873)
(.28305)
3873
(.31426)
.3873
(.27231)
3873
(.27231)
3873
( .26747)

3873
(.27231)
.3873
(.33328)
3873
(.26363)
3873
(.25748)
3873
(.26721)
3873
(.27010)
3873
(.26674)
3873
(.24597)
.3873
(.28206)
3873
(.28403)
3873
(.27763)
3873
(.21805)
3873
(.40319)
3873
(.22704)
3873
(.14828)

Table 4. Data base used for contour Map for Chicago network

02
x107%)

2109
(.15413)
2109
(.17113)
.2300
(.15171)
2600
(.18280)
2109
(.14565)
.2900
( .20390)
.1406
(.12099)
1758
(.11967)
2109
(.14021)
.1561
(.10770)
.1406
(.09805)
.1406
(.09683)
2813
(.17865)
3516
(.25606)
.0703
(.05155)
3735
(.26774)
2109
(.11874)
2109
(.21955)
.1406
(.08242)
.1406
(.05383)

83
x107%)

7701
(.56282)
6342
(.51461)
.8050
(.56598)
7750
( .54489)
8498
(.58688)
7450
( .52380)
6342
(.54574)
9060
(.61670)
9060
{ .60231)
9060
(.62509)
9060
(.63184)
9241
(.63643)
.9060
(.57538)
6342
( .46187)
9060
( .66442)
6342
(.45462)
1.178
(.66321)
3624
(.37726)
1.178
(.69054)
2.084
(.79789)

I
x107%)
1368
1232
1422
1422
.1448
1422
1162
1469
1504
1449
1434
1452
1575
1373
1364
1395
1776
0961
1706

2612
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8.767651

8.793935

8.758727

8.757982

8.754479

8.757261

8.810712

8.752403

8.746806

8.755152

8.757617

8.754573

8.735561

8.760868

8.766917

8.755810

8.714157

8.860574

8.720402

8.660092

MLE

8.790976

8.791107

8.791394

8.791605

8.792587

8.792648

8.793504

8.793646

8.793773

8.794241

8.794631

8.795420

8.795805

8.798197

8.799377

8.800740

8.806763

8.807629

8.808445

8.887303

Note that (. ) denotes the estimated coefficients (i.e., ) of the generalized cost function.
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In general, the value of time poses some problems. It represents the traveler’s perception of a suitable
trade-off between time and money. In other words, how much the traveler is willing to pay to save
traveling time on a journey. The rate may vary with the socio-economic status of the traveler and
also on the circumstances of the trip.

It is of interest that the estimated value of time from the results of our analysis is comparable
with past experience. For example, Wilson et al. (1969) reported the following generalized cost

function:
Uijm = (.66 ti,-m+1.326i,-m +wd;;n (49)
where Uijm = generalized cost from i to j by mode m
tijm = in-vehicle travel time in minutes by mode m between i and j
€ijm ~  €Xcess travel time in minutes by mode m between in and j
dijm = distance in miles by mode m between i and j
w, = 2.00 for car travel

3.18 for train travel
3.06 for bus travel

It should be noted from Eq. (49) that excess travel time is valued at twice the value of in-vehicle
travel time. A number of studies of the generalized cost of travel have noted this higher valuation of
excess travel time by tripmaker (sce Hutchinson, 1974). The generalized cost functions for auto-
mobile and transit given in Hutchinson (1974) are:

Auto cost = 2 (in-vehicle minutes) + 5 (excess time in minutes) + 0.5 (parking charges)

Transit cost = 2 (in-vehicle minutes) + 5 (excess time in minutes) + 1 (fare) + 15

After normalizing the weighting factors above, one may find it very similar to our results. Using the
values shown in Table 4 , which consists of twenty points for a fixed value of 8, = 0.3873x107,a
partial contour has been constructed in Figure 3. The X-axis represents the various values of 65,
and 05 is shown on the Y-axis. The values depicted on the contour map were obtained by the dif-
ference between the likelihood values and the minimum likelihood value, and factoring up 10,000
times. Twenty points are uniformly distributed, and then the spline curve fitting technique developed
at NCAR (1981) was applied to obtain each contour. The parallel lines donote the corresponding
entropy values. A value of zero means the constraint equals the observed entropy value, 8.7551. The
region above the zero line represents the violation of the entropy contraint; tiie inactive solutions to
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the entropy contraints correspond to the lower region. One interesting point has been observed from
the relationship between the likelihood values and the estimated entropy value. In Figure .3, the
current best point is located in a region where the entropy function is active.

Although some small suspicious points have been observed, the Figure 3 shows no general evidence
of nonconvexity of the likelihood function with regard to the parameter 6.

(10°%)
,1178 T T T T T T T T . T
entropy contour

likelihood

1015 20— contour !

,0852

,0689

0526

L (10%)
3,1286 3,7350

1

0362

7030  1,3094 1,9158 2,5222

A5CASET B3 CASEZ 6= ,3873x10

Figure 3. Contours of likelihood and entropy functions for the Chicago Region
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4. Test of Model Performance

Tests of model performance have been made for the Chicago case in order to evaluate further
validity of this approach. Eight evaluations are made against the past results reported in Chon’s
dissertation. As mentioned in the previous section, we considered two cases; (1) local minimum with
an inactive constraint of the entropy tunction (2) local minimum with an (almost) active entropy
constraint. For convenience, we denote CASE 1 for the former case and CASE 2 for the latter case.
Table 5 summarizes the R? goodness-of-fit statistics corresponding to each case.

Table 5. Goodness-of-fit test for the Chicago Network (R?)

PAST RESULTS CASE 1 CASE 2
TEST (A) 0.995 0.997 0.996
TEST (B) 0.980 0.987 0.986
TEST (C) ' . 0996 0.995 0.998
TEST (D) 0.998 0.998 0.999

Note:

TEST (A) = comparison of observed and estimated auto trips by origin

TEST (B) = comparison of observed and estimated tfansit trips by origin
TEST(C) = comparison of observed and estimated auto trips by destination
TEST (D) = comparison of observed and estimated transit trips by destination

As shown in Table 5, the results of this calibration, in general, give rise to a better fit against the
observed data. Especially, the result of the evaluation on TEST (B) that compares the estimated
transit trips with the observed transit trips by origin is notable.

5. Summary

In this study the estimates of the generalized cost coefficients are derived by the maximum
likelihood estimation method. The results are compatiable with past research in this field. The
method pursued in this study is so robust that one can estimate such coefficients without using the
observed travel cost data. The only requirement in this method is the origin-destination trip matrix
that is readily available in transportation planning from census data. In the analysis of the Chicago
network, we conclude that the access/egress cost for both highway and transit modes are very
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important even in the congested-network, while the travel time and operating cost are almost same.
The model performance is fairly good in terms of R?. The inherent structure of the likelihood
function was analyzed over the parameter space. The contour maps obtained from the analysis
empirically support the hypothesized unimodal shape of the likelihood function.

APPENDIX

In order to introduce the calibration problem of u that is the reciprocal of the Lagrange multiplier
associated with the entropy constraint, a slightly modified formulation from CMR in the previous
section is considered: Define, ignoring  q;;, in(18) let

the objective function in (15) - (A-1)

3 Pijm 1n (Pyja) (A2)

ijm

F(v)

G({) :

we have the equivalent formulation,

(CMR) Minimize F(vH-l Gl) (A-3)
(v,p) #

Subject to: (15) — (16) and (18)

The problem (CMR) is a convex programming problem if the parameters to be calibrated, such as u
and v are given. The convexity of the problem (CMR) has been examined by Evans (1976). Because
s, has been assumed to be continuous and strictly increasing, it is integrable and convex. In addition,
k, which is defined as highway operating cost is also an increasing function of the link flow. The sum
of two convex functions is convex. The second derivative of G(p) always is non-negative, thus, it is
convex. Therefore, the overall objecti\;e function defined in (A-3) is a strictly convex problem. If
there exists a local minimum it is a unique and global one. In other words, once the parameters have
been specified, the solution of (CMR) is unique. Thus, the calibration of the parameters in a model
must be resolved before solving the (CMR). As stated earlier, quantifies the extent to which people
take into account the equilibrium traveling cost when making decision. When goes to zero, they do
not take account of traveling cost, and the travel demand will be distributed evenly among modes.
On the other hand, when u increases, the model produces modal demands that correspond to the
least-cost mode.

Based on definitions of several fixed cost function, Evans (1970, 1971) explored the properties of
u in his trip distribution model, a typical gravity model which can also be derived by the entropy
maximizing formulation of Wilson, (1967). In that case, the Lagrange multiplier, u, which cor-
responds to a total system cost constraint, is reciprocally related to the multiplier associated with
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the entropy function in the (CMR). The role of u is extensively investigated. The relationship
between mean travel cost and y is given in greater detail. If the mean cost is not equal to either its
minimum or maximum value, u can be determined from the given cost, because the mean cost is a
decreasing function with respect to u. _

Erlander et al. (1978) considered another calibration problem in which y was defined as the
Lagrange multimplier associated with the entropy constraint as shown in (18). They investigated the
properties of p in the CDR model proposed by Florian et al. (1975). We shall prove some properties
of u in (CMR) in accordance with Erlander et al. (1978).

Suppose that we have obtained the optimal equilibrium solutions, v* and p* for given value of .
As stated earlier, the problem to be solved is a convex programming problem in which the objective
function is strictly convex with linear constraints. Thus, its necessary conditions are also sufficient.
Since the v* and p* are now functions of ¥, v*(u) and p*(u) are used explicitly. The equilibrium
flows, v*, and the equilibrium demands, p* are well-defined functions for g > 0. If u =0, the
problem of the (CMR) is not properly defined. Hence, we confine ourselves to u > 0.

Lemma 1

The problern CMR  has a unique optimal solution v* (), p* ().

Proof

It is-obvious from the convexity of the objective function with regard to v and p and the convex
domain with linear constraints.

Lemma 2

For u >0, F (u) is a decreasing function with respect to u, and G (u) is increasing.

Proof

For given g, , M2, we have
F(u) + 3 Gm) < F(md + i G () (A4)

Flu) + 26 < Flu) + & Glap) (A-5)
K2 Ha2

The inequalities in (A-4) and (A-5) are derived from the definition of the optimum solution.
Thus, we have:

PGu) —FGu) S 31 (6 (m)—G(m)) (A6)
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F(w)=F(m) S 2 (G(m) =G () @
Thus,
s CF () — F(u) 3 £ Glaa) —G() S 1 C F () — F () ) (A8)
Therefore, |
(A9)

Cpr— ) )(F(u)—F ()] £ 0

Equation (A-9) means that F is montone (decreasing) with respect to . In the same manner, we have

Cpa—mI(G(u)— G (D] 2 0 (A-10)

Hence, G is also montone (but, increasing) with respect to u. It follows that for u, > u, , we have.

F(ﬂz) - F(l‘l) = 0 (A-11)

G(¢) =G 2 0 (A-12)

It should be noted that if either F or G is constant for u, > g¢; > 0, the other F, G, so that v, p all are
constant. The following two theorems can be used for the sensitivity analysis of the equilibrium

solutions.

Theorem

For g > 0, suppose that u is not stable. Then, link flows are decreasing as u increases. Further-
more, the corresponding total travel cost is also decreasing.

Proof

By the assumption that F is a well-defined function, F is differentiable. If one takes derivatives of
F with respect to u,

av,
ap

g—z = s,(v) <0 (A-13)

Since s, (v,) is positive, we have
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av,
7z 0 (A-14)

Therefore, v, is decreasing as u increases. Suppose that (A-14) is satisfied for all a. Then we ﬁave:

Zasavadav, < 0 (A-15)

where 4v, is partial derivative of v, with respect to u. Therefore, (total) travel cost is decreasing
with u.

Theorem

Having the same assumptions as in the previous theorem, that is, u is not stable for u > 0, it is
true to have either: if P;;, is greater than (l/e), where e is a base of natural logarithm, then the
trave] demand is increasing with respect to y; or,if P;;, isless than (Ife), then the travel demand
is decreasing with respect to u. Furthermore, the corresponding entropy value is also increasing for
. Pijm > (l/e), and decreasing for P,. <(lfe). '

ijm

Proof

By the same assumption that G is well-defined, and hence, diffenentiable, we have:

aG . api~m ‘
T (In pijm+l)Tﬂ"l_‘ > 0 (A-16)

Thus, we have either

2;%"‘ > 0 if pym > (1/7e) (A-17)
or,

aPiim : ..

5, < 0 if 0(Piln < (1) (A-18)

Furthermore, suppose that equations (A-17) and (A-18) are satisfied for all i, j» m; then we have:

Zi5m(1n Py )dP, < 0 if Pin > (17€) ' (A-19)

or,

Zim(In PyiuddPij > 0 if 0 < Pyn < (L) (A-20)
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where 4P;;, is partial derivative of P;;, with respect to u. The corresponding entropy value — G
is decreasing or increasing, depending upon the value of P;;,

REFERENCES

. Boyce, D.E., Romanos, B.N., Prastacos, P., Ferris, M., and Eash, W. Urban Transportation

Energy Accounts, UMTA, 1981.

. Boyce, D.E., LeBlanc LJ., Chon, K.S., Lee, YJ., and Lin, K-T. “Implementation and

Computational Issues for Combined Models of Location, Destination, Mode and Route Choice”,
Environment and Planning A, 15, 1983, pp. 1219-1230. '

. Boyce, D.E., Fisk, C.S., Lee, Y.J., and LeBlanc, L.J. Procedure for the Self-Consistent Estimation

of Network Equilibrium Travel Choice Model Parameters, Paper presented at Eighth Pacific
Regional Science Conference, Tokyo, Japan, August, 1983.

4. Chicago Area Transportation Study Network Sensitive Mode-Choice Models, 1978,

10.

11.

12.

13.

14.

15.

. Chon, K.S. Testing of Combined Urban Location and Travel Choice Models, Ph.D. Thesis in

civil engineering, University of Illinois at Urbana-Champaign, Urbana, 1982.

. Dafermos, S.C. Traffic Equilibrium and Variational Inequalities, Transportation Science, 14,

1980, pp. 42-54.

. Dafermos, S.C. Relaxation Algorithms for the General Asymmetric Traffic Equilibrium Problem,

Transportation Science, 16 (2), 1982, pp. 231-240.

. Each, RW., Chon, K.S., Lee, Y.J., and Boyce, D.E. Equilibrium Traffic Assignment on an

Aggregated Highway Network for Sketch Planning, Transportation Research Record 944, 1984,
pp- 30-37.

. Erlander, S., Nguyen, S. and Stewart, N. On the Calibration of the Combined Distribution/

Assignment model, Transportation Research, 13B, 1979, pp. 259-267.

Evans, A.W. Some Properties of Trip Distribution Methods, Transportation Research, 1970,
pp- 19-36. :

Evans, A.W. The Calibration of Trip Distribution Models with Exponential or Similar Cost
Functions, Transportation Research, 5, 1971, pp. 15-38.

Evans, S.P. Some Applications of Mathematical Optimisation Theory in Transport Planning,
Ph.D. Thesis, University of London, 1973.

Evans, S.P. Derivation and Analysis of Some Models for Combining Trip Distribution and Assign-
ment, Transportation Research, 10, 1976, pp. 37-57.

Florian, M., Nguyen, S. and Ferland, J. On the Combined Distribution-Assignment of Traffic,
Transportation Science, 9, 1975, pp. 3-53.

Florian, M. and Nguyen, S. A Combined Trip Distribution, Model Split and Trip Assignment
Model, Transportation Research, 12, 1978, pp. 241-246.



ABLELEE FUE £ 71

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Hooke, R. and Jeeves, T.A. Direct Search Solution of Numerical and Statistical Problems, J. Ass.
Comput. Math. 8,1961, pp. 212-229.

Hutchinson, B.G. Principles of Urban Transport System Planning, McGraw-Hill, New York,
1974,

Hyman, G.M, The Calibration of Trip Distribution Models, Environment and Planning, Vol. 1,
1969, pp. 105-112,

LeBlanc, L.J. Mathematical Programming Algorithms for Large Scale Network Equilibrium and
Network Design Problems, Ph.D. Thesis, Department of Industrial Engineering and Management
Sciences, Northwestern University, Evanston, Illinois, 1973.

LeBlanc, L.J., Morlok, EX. and Pierskalla, WP. An Efficient Approach to Solving the Road
Network Equilibrium Traffic Assignment Problém, Transportation Research, 9,1975, pp.309-318.
LeBlanc, L.J. and Abdulaal, M. Combined Mode Split-Assignment and Distribution-Mode Split-
Assignment Models with Multiple Groups of Travelers, Transportation Science, 16(4), 1980,
pp. 430-442.

NCAR An Introduction to the SCD Graphics System, Author: McArthur, G.R., National Center
Atomopheric Research, 1981.

Nguyen, S. Estimating an OD matrix from Network Data: a Network Equilibrium Approach.
Publication No. 60, Centre de Recherche srur les Transports, Universite de Montreal, 1977.
Wardrop, J.G. Some Theoretical Aspects of Road Traffic Research, Proceedings, Institute of
Civil Engineers, 1, Part 11,1952, pp. 25-378.

Wilson, A.G., Hawkins, A.F., Hill, GJ. and Wagon, D.J. Calibrating and testing the SELNEC
transport model, Regional studies 3, 1969, pp. 337-350.



