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Power Spectral Density of Jittered
Signal with Uniform Probability

Density Function
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ABSTRACT

We have derived the power spectral density of RZ (Retum-to-Zero) and NRZ Nonreturn-to-Zero)
signals having the variable duty ratio, where jitter probability density is assumed to be uniform in an
interval. For the unipolar jitter-free signal, the discrete components are distinctly shown at the signal
frequency, fs, which is used in tracking the timing clock. When uniform jitter is injected to the digital
signal, however, this discrete components disappear in power spectral density function.
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1. INTRODUCTION

In digital transmission system, it is desired
that the signal should be sampled at the ac-
curate time instants. Such occasions, however,
rarely happen in practice. The CCITT defines
jitter as “short term variations of the signi-
ficant instants of a digital signal from their
ideal positions in time”. In general the sources
of jitter are the Mux/Demux process, the limited
channel bandwidth, channel noise, and CRU
{Clock Recovery Unit) of the repeater or recei-
vers. And it is generated and accumulated along
the chain of repeatfm‘:x.“"l For the spectrally
efficient signal transmission, the data signal is
coded to have no dc component by the bipolar
line coding method, and through the BUU (bipo-
lar to unipolar unit) it is converted to the uni-
polar signal that has the discrete spectral com-
ponents at the stage of repeater or receivers. The
fundamental discrete component is used to be
the timing clock which decides the data value.

In this paper, we show that if the jitter with
uniform probability density is injectted to the
digital signals, it is physically observed that the
discrete components of signal disappear, while
the continuous components increase.

IL. SEGNAL ANALYSIS

We supposed that the signal has jitter with

1) In the case of the bipolar jitter-free signal
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Fig. 1. Bipolar jitter-free signal
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the uniform probability density, and has the
variable duty ratio. But in computer simulation,
the fixed duty ratio 0.5 is used.

The equations of the signal shown in Fig. 1
are represented as follows.

A, —T/2R<t <T/2R
it = {1
. 0, elsewhere

(— A, -T/2R<1<T/2R
Sx(t) = {21
\ 0, elsewhere

, where g;(1), g;(t) stand for the transmitted
data value, one and zero, respectively, and
1/R is duty ratio, By Fourier transforming the
signal g, (t), g,(t), we obtain,

Gi(f) = S: () e~ &t -'-"'%sin (AfT/R) (3]

Gi(h) = {7 ga(0) e dt = —F— sin (T/R) (@

Because fs = 1/T, T is the period of the data
symbol,

G {0)=G,i=AT/R, Gi(mfs} =G;(mfs) = O,

m = integer (5]

According to the reference [4] the complete
spectral density of random data signal which is
composed of element signal, g,(t), g,(t), is found
to have the following representation.

S(F) - 2fsp (1 —p) G —Ga(£) 1°+
+§2 (pG O (1—p) G0 * &(F)

1 zf;zf;l 1pG1(mis)+(1-p} G:(mfs) 1! §(f—mfs)}6)



18

A summary of the terms and notations in
eq. (6) follows:

S(f) =the complete power spectral density,
fs =signaling frequency = symbol rate
(=1/T) (in binary systems the bit rate equals
the symbol rate, i. €., fb = fs),

G,(f) =the Fourier transform of the symbol

g1(t),
Gy(f) =the Fourier transform of the symbol
g,(t),
P  =probability of occurrence of g1(t)
symbol,
l-p  =probability of occurrence of 23(t)
symbol,
m  =an integer number (m=1, 2, 3,..).

From equations (3), (4), (5) and assumption
{p=1-p=1/2), it follows

H
S(f) =—2'§,-I sinciZ t — 3([) (71
where Z =nfT /R, sinc x=—Sl-"-xx

(2) In the case of bipolar jittered signal

Fig. 2. Bipolar jittered signal

Fig. 2 depicts a sample of the bipolar jittered
signal s(t) whose equation can be made up of
x(t) and y(t).
s(t), x(t), and y(t) is respectively siven by

Each equation of such signals

R H B L 5 % 4 B8 (1986)

s(t) —x(thy(t)

mT t-—mT mT- fm
= ARt (F505) A @
X0 =AZan (00 (9)
. t- mT -8,
y(t}=§ﬁ( mT/R ) (1
h 1 —T/2< ¢ <T
were”{i>=_ { f2< ¢ <T/2
- T * 0 elsewhere

In Fig. 2, the time origin is specified for
convenient evolution, but in fact no specific
time origin should be chosen, and

random variable having a value

where agq
+1 or -1 with the equal probabi-
lity
m = random variable with a probabi
lity density function p(#) uni-
form in interval (O, T]

Hence we can suppose that the above signal
is defined as a wide-sense stationary and ergodic
process, that is, an ensembie average of random
variable at certain time point of tke process
equals to a time average over the entire time
intervais,

If x(t) and y(t) are statistically independent
and stationary process, then the autocorrelation
function of equation (8), s(1), is

Rs{r)=E(s{t)sit— 7))
“Elx(t)hy(t) x(t- 7)y(t—1))
=E{x{t)x{t- DIEt) yit- 7))

x( ) Ryl 1) (1
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Since the events are independent of others
in different intervals, we only consider an arbit-
rary interval [O, T). And from an ergodic
property, using a time average over the interval
[0, T, individual processes x(t), y(t) are related

in the autocorrelation function of s(t) as follows.

Ra( 7) =Ex(t)x(t—1)}
-5 o) n(t=-) e

2
% (T—irl), izI1<T

= 12
0

, elsewhere

Ry(t}=Ep{t)yl(et- 1)

-1 nlgre) 17w @

(F-1ru, tei<T
03

I
™
Sl

0 , elsewhere

Now that the power spectral density and the
autocorrelation function are Fourier transform
pairs, the spectral density of jittered signal
s(t) is derived as eq. (14) after combining the
eqgs. (11), (12), (13).

st = {7 Re(merar

T
_oAt "‘[l_.l _! 3 _l 1],
—2A SolR T(R+1Jr+ o]
cos(2nfr)dr
1A
(2 2f*)RT

- ((R-- 1) sin*Z ~sin¢c 2Z+ 1)
14

Like the analysis of the bipolar signal,
element signal g;(t), g2{t) are as follows,

(3) In the case of unipolar jitter-free signal

1 0 1 1 0
l—'-]‘ ! r‘—] l—‘—‘, ‘.
A \ ! ||l | |
' 4 1 e L
T 1+ T 1 T i t
SRR oL AT t
0 T 2T 3T 4T
Fig. 3. Unipolar jitter-free signal
glt)= (A, —T/2R<t<T/2R
{19)
0, elsewhere
g:(t)=0, everywhere {16
Fourier transforms of these signals are
® A . ~fT
G.(f) = S-.,B(”e""" dt = —sin <o un
G.(f)=0 18

Assuming that the probability of occurrence
of element signal g,(t) is equal to that of g2 (t),
p=1-p=1/2, then from equations (6), (17), (18)
and fsi=l/'l‘, the power spectral density function
of unipolar jitter-free signal is

H
S(f) - --’:TT,-[zsinc’ Z+3(0) 1
2 5 ine BT
i T % sinc 5 ) (19

(4} In the case of unipolar jittered signal

Fig. 4. Unipolar jittered signal
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As shown in eq. (19), the unipolar jitter-
free signal has both the discrete and the continj-
ous components. This discrete component is
available in extracting the timing information
for the synchronization in the digital transmis-
sion system,

The unipolar jittered signal is expressed in
eq. (20).

_ {t—mT b
s(t) A% amﬂ\ T/R

20

Here random variable g, is stationary and
intervally independent, and has the probability
density function p(# )which is uniform over the
interval [O, T]. Hence from the similar pro-
cedure as in the preceeding results, the auto-
correlation of unipolar jittered signal s(t) is

Rs{ t)=E(s(t)s{t—r)]

AT T T
=T [R Ir 1], |r|<2 (1)

Therefore, the spectral density is obtained
as follows.

S(f) - S":’ Rs(7)e “™" 47

T
:» (R 14T .
—2A S ?( ﬁ—r)cos(Z’rf'!Jdr
=—AR'I; M) +A%sinc*Z 22

Thus no discrete component at the multi-
ple frequencies of the signal frequency fS shows
itself in power spectrum.
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I1t. COMPUTER SIMULATION

This section will visualize the above theore-
tical results through a plotting program. Eq. (19)
and (22} are used in this simulation, and un-
specified parameters are fixed as below values.

1 S -
i pulse duty ratio 5. (R>1)

p{ & } =probability density function of &,

A - Amplitude of transmitted signal= 1,

|
fs— T signal frequency

T =variable of autocorrelation

The results of simulation are figuratively
shown in Fig. 5, 6. For unipolar jitter-free
signals, the power spectral density is shown in
Fig. 5, and for unipolar jittered signal, it is shown

in Fig. 6.

power sectral density (jitter-free RZ signal)

0.1

| duty ratio - 507%
A-=1.0

T{symbol period) =1.0
0.06

i
0 1.0 2.0 3.0

normalized {requency(f / fs)

I'ig. 5. The power spectrum of jitter-free signal
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power spectral density(jittered RZ signal)

0.1
i duty ratio= 50%
A=1.0
0.06 T(symbol period) = 1.0

. |
4} 1.0 2.0 3.0

normalized frequency(f / [s)

Fig. 6. The power spectrum of jittered signal

V. CONCLUSION

We have derived the power spectral density
functions for jitter -free signal and jittered
signal respectively in section II, also observed
that if no random phase variations are injected
to the signal, the discrete components of the
power spectral density exist at the frequency
integer times of the signal frequency fs = 1T,
as shown in Fig. S.

But since jitter is generated during signal
transmission, these discrete components would
be reduced in accordance with the amount of
phase variation,

In this paper, we choose the worst condi-
tion that jitter probability density p(®) is uni-
form in {0, T] to qualitatively study the effect
of jitter on the signal power spectral density,

where discrete components remarkably dis-
appear as shown in Fig. 6. Considering the
more suitable jitter probability density in our
calculation of spectral density, we may precon-
ceive the discrete components are diminished

tess than in the uniform case.
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