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B-Statistic in the Complex Case
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ABSTRACT

In this paper distribution of the determinant of B-statistic in the complex case has
been derived in terms of incomplete gamma functions. Asymptotic expansion of the

distribution has also been derived.

1. Introduction

Let the pxp random matrices A; and A, be independently distributed according to
CW, (-,m, ) and CW,(-,n,2,0) respectively i.e. A, is distributed as a central
complex Wishart matrix and A, is distributed as noncentral complex "Wishart with
noncentrality parameter matrix 6. Let the pxp random matrix L Dbe defined as

L= (A+A)7F AATAY
The distribution of L is known as noncentral complex multivariate beta type I

The purpose of this article is to study the nonnull distributions of |Z| and [/—L]|.
First in section 2 some distributional results are derived. The exact and asymptotic
distributions of a multiple of —In|Z| and —In|I—Z| have been derived in sections 3
and 4 respectively.

It may be noted that many authors have studied the distribution of random matrices,

e.g. Roy(1966), Gupta (1971, 75, 76, 77), and Gupta et. al. (1975). The method used
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in this paper has been used previously by Nagarsenker (1979) and Gupta and Javier

(1986).

2. Distribution of L

The hypergeometric function with complex matrix argument A is defined by

r eos . ver . — = [a ]x"'[al]xéx(A)
Fi(ay, ey an by ey b A) %; [bi]x'"[bt:}x 21 @.0n

where C. called zonal polynomial (James (1964)) is a homogeneous polynomial of degree
b in the latent roots of A: pxp, which is a Hermitian matrix, k= (ky, o, k), Ry=ee-
>k, >0, ki+--+k=k; X is the summation over all such partitions; aj, -, a; byy=eey s

are real or complex constants with suitable restrictions on the b;'s;

[a]lc:fp(a, If) /f}(a) :jlf[l __ﬂ?’%@%—{f)l—l_ (2'2)

and

Fo@={ __ 1Al=etr(~A)dA, Re(@)>p—1

s
— a1 Ep(a’j+1)’ 2.3

is the complex multivariate gamma function. We now give the following two results
needed in the sequel.

L@l (b, r)

§I>L=E'>o ]L]““’|I—L|"'1’C§(R(I-—L))dl,= j!'p(a_’_b, £)

C.(R), Re(a,b)>p—1.

ST  etr(=ST) | T4+ Co(RTYAT =T, (b, ) |S]|*Ca(ST'R).
=T’'>0
The matrices R and S above are Hermitian positive definite. The following result
regarding the density of L is now easily derived.
Theorem 2.1: If A, and A, are independently distributed according to CW,(-,m, %) and
CW,(-,n,3,0) respectively, then the p.d.f. of L is given as
FY = {Fom )} 1| 3|~ etr (—6) | L -+ I-L|»*
§  etr (=TT Tl Ry 65T A=) (THdT, 0<L<L.
2.4
Proof : Let L=T"% A,(T%)’, T=A+A, in the joint distribution of A4, and A,. The
jacobian of transformation is J(A4,, A,—L T)=|T|*. Integration with respect to T

gives the density of L. ]
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This distribution (2.4) is called the noncentral complex multivariate beta distribution
of full rank.
Theorem 2.2: If L has noncentral complex multivariate beta distribution of full rank

then
Tym-=n)Tm+h)

Jimy — . _ A .
E(Li"= Foom T, (s ns i) etr (—6) Fy(m+n, m+n+h; 6),
Re(hy> —m+p—1, (2.5)
and
yim Lamin) L, (n+h) PN . T h-a
E(I-LIY= Fotny Do (m+nih) etr(—0) fy(m+n,nt+h; nym+n+h;0),
Re(l)y>—n+-p—1. (2.6)

Proof: The results follow from the definition of expectation which gives integrals
involving Z and 7 in both the cases. Integration of Z and 7 in that order vields the
results (2.5) and (2.6). 7

Lemma 2.1 : For bounded h (Barnes (1899)),

— m 7yt
In £ () =In v 25 + (rh= ) In g x5 %ﬁlif;—(m—i—le,m(x) @.7)

where R, (x) is the remainder such that |R.(x)|<<a/|x|", a is a constant independent

of x, and B.(h) 1is the Bernoulli polynomial of degree v defined by v et (er—1)-!

==~ Z; B.(h). These Bernoulli polynomials are extensively tabluated and for r=1,2,3
r=0 7!

and 4 are given by (Anderson (1984)),

Bi(hy=h—L, B,(h)=h—h+1/6,

By (h) =18 — (3/2) I? +éh Bi(h) =h*—2k*+ h2—1/30.

3. Distribution of |L|

Let W=—2(m+n—-u)d In]Lj, 0<W<ce, where u and § (>0) are constants to
be determined later, Then the characteristic function of T is given as
.¢w BH=E@vy=E"|L] “2mbnmwiot]
where l':(—l)é. Using theorem 2.2 and (2.1), (2,2) and (2.3), we get
Ce(6)
k!

du () —etr (—0) % 3 i}%ﬂ A ()
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where
_ Lom—2(m+n—u)iot)
Iem+n—2(m+n—u)iot-+k;)
:ﬁ { I'l(m+n—u) (1—22:5t)+1—]:—n+u] }
i=t L[ (m+n—u) (1—2i08) +1—j-+u+k] )
Applying Barnes’ formula (2.7) to (3.1), we get

A k) =

(3.1

In A,(Lg) = — (ip+F) In[Om+n—1w) (1-2i0) 1+ Q. (mtn—w) (1—2id)]™,

where

,_(_1)T+1 P . _ ) o
Qr——_—__i’(i’—kl) T:S;‘ (B, —j—n+4u) =B (Bi+1—j+u)].
Hence we obtain
A, (4 gy =T (m+n—u) (1—2i0) ] #+ [Hi1 Dif(m+n—u) 1-2idt) 7], (3.2)
where

Di=5 321 QD Di=1, =12, 3.3)

Thus letting v=np-+Fk, we get

o I'ymin k) C.(0)
éw (B) =etr (—0) % ‘T‘ o 7

C{(mn—10) ~(1=2it3) "} +35 LE{(m+n—1) 1=2i0} 7). (3.4)

Now by inverting the characteristic function (3.4), recognizing that (1--2i6f)"* is the
characteristic function of the gamma density g.(2d, x), we obtain the p.d.f. of W in
the following theorem.

Theorem 8.1 : If L is distributed according to a moncentval complex multivariate bela
of full rank, then the p.d.f. of W=—2 (m+n—u)d InlL| is given by

¥ Foom+nr) C(O <& D:
3 Fp(m) k! r=0 (Wl+ﬂ~u)’+"

and the c.d.f. of W is given by

e o S Dpmtng) Co(0) & Dk
PIW=w]=etr(=6) 228 —5~ = B = min—u)

Grv (20, )

fr ) =etr (=) 32

G.0(20,w) (3.5)

where G.(20, x) :jx 2.(28, x)dx and the coefficients D are defined by (3.3).
0

Next the distributon of W*=-—-2(m+-n—u)d ln}[—Z! where u and 0 ((Q) are con-
stants, is given in the following theorem.
Theorem 3.2 : If L is distributed as a nonceniral complex wmmltivariate beta of full

rank, then the p.d.f. and the c.d.f. of W¥*=—-2(m+n—u)d In|I—-L| are given by
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. o f(m+n,/:) é;(@) T T (pr o gr o\ = Crbm) on (95, W*
Swx (w*) —etl’(—@)%: ZK: Pf’p(i’l,ﬁ) B %]r(m +1—u) & rin (20, W)

and

oo

PIW*<w*]=ctr(—@) S= 3 Letmn ) Ci(6) ST Ontn—u) G, (25, w)

=0 F Ty(n, k) k!
(3.6)
where n=mp,
]::%illRl]:—z, Ji=1, r=1, 2, G.7
<
and
J— P - .
Rim e S (B o 1)~ By (o1 )]
1=1,2,--. (3.8)
Proof: Using (2.6), (2.1), (2.2)-and (2.3), we get the characteristic function of W+
as
ot (@) & T'ym+n, 1) C.(0)
Pw (1) =etr( @)Lfv:“ %: 7W A, (¢, &) R (3.9)
where

—17 [LLOntn—u) (1—2i6t) 4 ky—j+1—m+u]
Ao _J-H=1 {PE(ern—u) (1—210t) +ky—j +1+u] }

Expanding logarithm of A, (t,k) by using Barnes’ expansion, we get an expression in

Bernoulli polynomials involving R, gven by (3.8).
A (t,R) we get

Inverting this expression back to

Aclt,r) =[ (m+-n—n) (1—21’5t)]'"[1+% {(m+n—u) (1—2i66)} ]
where J¢ is given by (3.7). Substituting the above expression in (3.9), one gets

bt () =etr (@) S 5, Lelmtnn) & o [S= {(m+n-u) (1~2i80)} -]
£=0 FP(”, K)k! r=0

(3.10)
Inverting (3.10) yields the desired result.

4. Asymptotic Distributions of [I:J and lI—I:]

In this section we derive asymptotic expansion of the distribution of a suitable
function of each of |Z| and |I—I|.

rheorem 4.1 : The asymptotic distribution of W=—2(m+n—u)d In|L| is given by
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P[WSWJZ% Pk, tr0) G, (25, w) +etr (—6) % Y 0u[Gr0 (20, w)
—G,(26,w)] ka(’@) +Om™)
where v=np-+-k, Pk, tr@)=cetr(—0)[trO]*/k},
R T O G S S T n_ 9 - n—p
o= (L 20 bk2i e +2k(1r - L) | and p=[1+ L2 |
Proof : In the expression for the c.d.f. of W let
b(k) = Fom+n, k) ~f { F[(m+n——u)+k,-+1+u—~jj}
Iom) st T[m+n—u)+1+u—j—n]
Using Barnes' formula (2.7), we have
Ing () = (np+ k) ln(m+n—u)+i;l Q= (mn—u)
where for »=1,2, -
Q=D S= B (ki u—j+1) - B :
r—_7’_(7’—+1_)—§ [Bry(kitu—73+1)—B,,y (u—n—j+1)].
Thus
§ () = (m+-n—uym 4 [1+ 32 Df (metn—w) ], .1
where D’f is defined recursively by
Di=p 32 QADy D=1, 7=1,2, (4.2)
Substituting in (3.5) from (4.2), the c¢.d.f. of W can be written as
PLW<w]=etr(=6) - % [0 (m4n—u)™]
[ Dy (mn—u)7Gro (23, w)] £o(O). 4.3)

67

Multiplying out the two infinite series in square brackets in the last equation we

get the product
G, (20, w) + [ DG, (26, w) + DiGy 4 (26, w) ] (m+n—u) *+O((m+n—u)"%).

Since D’i= —Dj form equations (3.2) and (4.1), the expression (4.3) becomes

PIW<w]=etr(—0) % > é;e('@) G, (26, w)

+etr (=) 32 5 Di(m+n—10) 7 [Gr.0 (23, w) — G (26, w)]

. C.(6)
3]

+O((m+n—u)~*%)
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:%P(k,tr@)Gu(25,w)+etr(—@)% > D (m+n—u)! ];(’@)

- [G140(20, w)—G, (28, w)]1+O0((m+n—u)-?) (4.4)

What remains to be done is the evaluation of D}, where

Di=L == (B, (u—j—nt 1)~ Bulh, tu—j+1)1.
After some algebra, we obtain

Di=—1[= (k3=2jk2) + R Q1) +n(@pu—np—?) | (4.5)
Now choose % so that 2pu—np—p*=0 and choose a number o’ such that (m-+n—u)i=

p'm. Obtaining the solutions %= (u--p)/2 and p’:<1+—%¢£>5. Substituting these val-
ues in (4.5) we get

r__mip 2 _oih. ) n_p'>

Di= f[mfiq: (K} —2jki+k;) 2k (HW = ]

Substituting this last expression in (4.4) gives the desired result. 7

Theorem 4.2 : The asymptotic distribution of W*= —2(m+n—u)s In|I—Lj is given by

PLW*<w*] =G, (20, w*) —ﬁ%@ [Gri1 (28, w*) ~G,]+ 0072 (4. 6)
m—p +A_

where p=mp, u=(m+p)/2+-(—A/p), A is a real number and p=1+ 5 np

Proof : In the expression (3.6) for the c.d.f. of W*, let

_Totminr) 2 (TLon+n—u)+k+1—f+u]
A== s ,-131{r[(m+n—u)+k,-+1—j-m+uj}-

By Barnes’ formula (2.7), the expansion in Bernoulli polynomials of this quantitiy is

A(m) = (s =) 143 5 (met n—10) 7], 4.7)
where Ji=-- 3= IRi]", J%=1, and
1=1

Ri={=D" <~ [Buyi(Rj+1—j+u) =By (ki+1—j—m+u)] [=1,2, -
l(l+l) =1

Substituting (4.7) in (3.6) we get

PLW*<w*] =etr (—6) 3 = C;?('@)[% j':<m+n—u)-r]

| ST Om 1) G (20, w) | (4.8)
The product of the two infinite series enclosed in the square brackets is
Gy (20, w*) + Ji[G140(20, w*) =G, (20, w*) J(m+n—1) "+ O((m+n—u)~?)  (4.9)
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L4 . . - . . . .
where ]iz%— > _ [B,(k;+1—j—m+u) — B, (k;+1—j+u)]. Simplifying this we get
=

iz—%[Zk—pZJrzpu*mp]. Now choose # so that 2A—p2+2pu—mp=0 and (m-+n—

u)d=p’n. Obtaining the solutions u= —A/p+(m+p)/2 and p'=d <1+ 74127117 +%>

Substituting these values in (4.9) and subsequently putting these values in (4.8) we
get

PO <uwri=ete (—0) 32 5 SO (G, 0,00 — =D,
(G (28, W) — G (23, w9} 140 7).

Notice that the factors in the square bracket in the above expression are independent

of 3. Therefore using the result 3 Cy(6)=tr@® and summing over & we can easily

3

get (4.6).

If we choose A=tr®, then we get the following corollary of Theorem 4.2.
Corollary 4.2 : The asymptotic distribution of Wx=—-2(m-+n—u)d In|I—L| is given by
PLW*<w*]=G, (26, w*) +0(n™?)
when u= (m+p)/2—tr6/p.
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Line
17,18
23
24

6

24
26

3

6

10
12
13
14

Printed

Cs

(Lo p(m))

0<L<I

I'y(m+n+h)

(2,2)

I y(m+n—2(m+n—u)idt-+k;)
Qr

D L(m+-n—u) (1—2idt) "
QI

v

Iy(m-tn, k)

Correction

Cs

(L ()T y(n)} !
0<L=(I)'<1
Ty(m+n+h)

(2.2)

Ty (m+n—2(m+n—u)idt, r)
Q.

D[ (m+n—u)(1—2i0t) 1"
Ql

v

Ty(m+n, k)
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