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Abstract

In this paper the PID-B self-tuner [1] is extended to allow a less abrupt response to set
point or plant parameter changes and to control a nonminimum phase plant. The proposed
extended PID/ST derived from the direct pole-placement PID/ST is obtained with the Bezout
identity as the underlying design method. And its control gains are normalized by the integral
control gain, Although the integral control gain is normalized to 1 in our scheme, the so-called
“set point and derivative kick’ can be avoided sufficiently by normalizing the measurement
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vector and set point.

I. Introduction

Although several control algorithms have
been developed, the most common algorithm
used in industry is the discrete equivalent of
the continuous proportional-integral-derivative
(PID) controller. One reason for the popularity
of the discrete PID controller is that it requires
little knowledge of the dynamic characteristics
of the plant under control, and moreover, the
descrete PID controller has been found to give
perfectly adequate performance in practice. In a
discrete PII controller, the sampling time, the
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proportional, integral, and derivative control
gains need to be selected to satisfy control
objectives [2]. However, in a self- tuning PID
controller, the above four parameters satisfying
control objectives can only be attained with
adaptive algorithms [3],[4],[5]. In a recent
paper Ortega and Kelly [1] presented a parti-
cularly simple PID-B self-tuner to avoid the so-
called “set point and derivative kick,” which
includes the set point signal only in the 1
action, thus the selection of the initial estima-
tion value of the integral control gain is very
important for the start-up transients. However,
in case the sudden changes of the plant para-
meters or the abrupt changes of the set point
occur, its performance is poor. And also the
plant under control should be minimum phase.
In this paper the PID-B self-tuner is extended to
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allow a less abrupt response to set point or
plant parameter changes and to control a non-
minimum phase plant with a richness condition
on the control input U(k). However without
a persistency of excitation assumption, only
Iocal stability may be established [6]. The
main features of the proposed design technique
derived from the direct pole-placement PID/
ST are the followings: i) Since the integral
control gain is normalized to 1, it imposes no
constraints upon the selection of the initial
integral control gain estimation value, thus
allowing greater freedom in the design, ii) it
involves insertion of the Bezout polynomial
identity into the polynomial design equation
which arises in arbitrary pole assignment, thus
formulating a linear equation error model for
estimating 3 controller parameters and 3
additional auxiliary parameters [7], iii) it also
involves the normalization of the measurement
vector and set point, thus allowing a less
abrupt response to set point changes [8],{9],
and iv) it is designed in the parameter form,
thus allowing easier implementation of the
adaptive algorithms. Computer simulations
demonstrate the effectiveness of the proposed
extended PID/ST control algorithm.

I. PID Self-Tuners

We will consider here a slightly modified
PID-B structure [1], given below in the velocity

form
S(q™}) U(k) = a e(k)-R (q71) Y(k) (1)
with S@H=(1-aNH(@+s a1 (la)
R(@D=(0-q") (1 -1a")  (1b)
e (k) = Um(k) — Y(k) (1¢)
(1) can be written as
' (@) Uk) =e(k) R ‘(@}) Y(k) )
with $'(@H=(1-a1)(+s,’ql)  (2a)

R'@H=(01-aD) (1 -1’ aH(2b)

where q'1 is the backward-shift operator, Y(k)
is the plant output, U(k) the plant input,
Um(k) the set point, and e(k) the tracking
error. The modified PID-B is a particular

version of a conventional PID structure
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utilized to avoid the so-called ‘“set point

and derivative kick’ (sudden changes in con-
trol law (1) when the set point is changed)
[10]. The plant dynamic characteristics will
be approximated by a unitary-delay second-
order linear time invariant model. PID/ST’s
are classified in this paper into two cases:
direct and extended PID/ST’s based on pole-
placement. Let us introduce the following
controller (Fig. 1) presented in [1].

Fig. 1. Closed-loop system with PID
controller.

(1) Direct Pole-Placement PID/ST

Consider a single-input single-output, dis-

crete, time-invariant second order plant
described by
A@") Y(K) =q1B(@™) Uk) 3)
where A(q })=1+a;q  +a,q7? (3a)
B(a1)=bo+b1q!; by # O (3b)

A(@!) and B(ql) are assumed relatively
prime polynomials in the delay operator
gl with unknown coefficients. Equating
the closed-loop transfer function with the
desired one (q”1/C ' (q’!) ), we get the poly-
nomial identity

aC'(@HB(@)=A@)S(q!) +

a'B(@H M@ (4)

which has a unique solution in terms of &, s,
17, and 1y,

where

M(@Y) =a+R(@™") (4a)

C'@h=1+er @ =t o g ne<3
(4b)

C ' (q’1) is the desired characteristic poly-
nomial.
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From (4) and (2), we get

B@™!) (I1+s1 ‘g’

A@YH (€@ DH-a1)/(1-q1) )—q (1, "—1r'a"

€)

A linear regression form may be obtained for
the parameter vector [ s;"r; "1, °] T

Note that in the control law (2), the con-
trol gains are normalized by the integral con-
trol gain «, and the coefficient « is included
to tune the PID controller in terms of a pole
assignment objective of (4). And also (4)
then completely characterizes a fixed compen-
sation scheme for arbitrary pole-assignment
when A (q'l) and B (q'l) are known. In (5),
S (q’Y) contains the zero polynomial. Hence,
the discrete time plant under control should
be minimum phase.

(2) Extended Pole-Placement PID/ST

Let us introduce the partial state Z(k) to
retain open-loop zeros, then (3) can be equi-
valently represented by the controllable back-
ward shift operator representation.

A(@hHZ(k) = U(k)
Y(k) = q'B(a™HZ(k)

(6)

Application of the control law (1) results in
the following closed-loop system.

S@™) A(@™) Z(k) = S(a”) Utk) (N
= _M (¢Y) Y(k)+ aUm(k)

= —q1B(a)M(a™!) Z(k)+aUm(k)
Then, (6) can be written as

(A @) S@V+q ! BlaHM(a ) ) 2(k) (8)
= aUm(k)
Y(k) = q ' B(aH)z(k)

Let C(q™!) be a monic asymptotically stable
polynomial of degree nc ( < 4) whose zeros
represent the desired closed-loop pole locations
for (8). These can be assigned provided s(q’hH
and M(q’!) satisfy

1
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A@@HS(@)+q ' B(@HM(g ™) =aC(@™!) (9)
where

@)= t+e,q 4 —+c, (92)

Eq.(9)has asolution for S(q”!)and M(q™)[11]
When (9) holds, (8) simplifies to

C(q™!) Z(k) = Um(k)
Y(k) =g 1B(q}) Z(k)

(10)

Thus after cancellation the closed-loop
transfer function relating Y(k) and Um(k)
becomes

Y&)  a'B@h

(11)

Um(k) - c@@™M)

Since A(q '1) and B(q'l) are coprime, there
exists a unique pair of polynomials

h(al)=ho +hyq? (12)

k(@) =k +kyq7?
which satisfy the Bezout identity
a'B(a™) h@H+A(@ k(@ H =1 (13)

when (13) holds, (9) can be written as

A(@Y) sS(@H)+q ' B(aHR@@ ™)
= —aq'B(al) +aqB@@)Hh(@HC@q ™)

+aA(@ k(@ @™ (14)

Multiplying (14) by Z(k) and using (6) yields

A(@HS(aHz)+a B(@HR(q)Z(k)
= —aq'B(q™!) Z(K)+aq'B(a H)h(g)C(qM)Z(K)

+aA(g k(a™)C(g HZ(K) (15)
aY(k)= —-S(a™H) Uk)-R(@ ) Y(k)
+ah(q™)C(q™)Y(k)
+ak(q )C(q Yu(k) (16)

The constant ko in (12) can be taken as 1
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because the Bezout identity must be satisfied.
Then (16) can be written more compactly as

Y0 =P k) a7
with ¢(k) =[ (¢ ~1) U(k—1) (@} -1)Y(x)
(1-gHY(k-1) Ca™HY(k)
ClaMHY(k-1) C@Huk-1)

(ClaH-1+qH U 1T (172
P=[s; r'ry hghyky, 117 (17b)
Define the normalized system :
¥7(k) = PTX(k) (18)
where
Y (k) $(k)
Yik) = NGO " N© (18a)
and
N(k) = Max ( 1, [loC) 1) (18b)
Note that || X(k) || <1 (19)

The normalized tracking error en(k) is then
determined as follows :

efl(k) = U] (k) —PTX(k) (20)
where
Um(k)
U (k) = 20
n® = e (202)

HI. Derivation of the Adaptive Law

Since the plant parameter a; and b; are un-
known, it is natural to replace the vector P by
the adjustable vector ﬁ(k) which will be up-
dated by the adaptation mechanism. To eval-
uate the deviation between the plant output
and set point, we introduce the following
criterion function :

k
1 N
G =— Z [Up0) - X0 P 12 (21)
J:

The estimate ls(k) is determined so that the
criterion function J(k) becomes minimum at
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each k., Letting the gradient of J(k) with

respect to l3(k) be zero and employing the
matrix inversion lemma yields the following

recursive equations.
P(K)=P(k~1+L(x) [ UD (k) — X(K)TP(k—1)}
(22)

F(k)=[1— LK)XK)T] Fk-1) (23)

L(k)=F(k—-1DX(k) /[ 1+X(k)TF(k— DX(k)]
(24)
We can avoid the unnecessary storages and
improve both accuracy and computational

efficiency by applying UDUT factorization
method [12], [13].

IV. Computer Simulations
The following two examples illustrate some

features of the self-tuning PID controller.
Consider the following plant :

A(@V)=1-0.857¢"1+0.548q2 25
B(q1)=0.381+0.310q™t

The desired characteristic equation is
C(q™1) = 1+0.7500q°1 +0.2466q 2 (26)

UDUT factorization method was used through-
out for the estimation of the parameters. In
the PID-B/ST, a(0) = 0.1 and all the remaining
initial conditions were taken equal to zero, in
the direct PID/ST, the initial conditions were
taken as [ 0.6438 2.9640 1.7490 1T and in the
extended PID/ST, all the initial conditions
were taken equal to 0.6,

Example 1 : PID-B/ST, Direct and Extended
PID/ST Performance Comparison.

Fig. 2 and Fig. 3 show the output and the
reference signal when the controller structure
PID-B/ST and direct PID/ST, respectively, were
used. In Fig. 2, before the estimation para-
meters have converged to the proper values, it
does not show a good performance. And in
Fig. 3, with the well selected initial estimation
values, it looks like having a good characteristic.
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However, whes sudden changes of the plant
parameters occur, its performance is very poor.
And the above controllers have a problem of
the selection of the initial estimation values.
These drawbacks are overcome with the extend-
ed PID/ST, whose behavior is shown in Fig. 4.

Example 2 : PID-B/ST and Extended PID/ST
Performance to Plant Parameter Changes.

Consider the sudden changes of the plant
parameters as follows :

Equation (25) o< k< 100

A(@H=1-0.3q71+0. 1972
¢ 100 < k< 200

B(q"1H)=0.35+0.1q"!

Equation (25) 200< K< 350

The behavior of the PID-B/ST and the
extended PID/ST are shown in Fig.5 and Fig. 6,
respectively. Notice that the performance of
the extended PID/ST is superior to that of the
PID-B/ST in the sense of the classical figures
of merit, such as overshoots, settling time, and
rise time.
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Fig. 2. Output Y(k) and Set point Um(k)
(PID-B/ST).
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Fig. 3. Output Y(k) and Set point Um(k)
(Direct PID/ST).
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Fig. 4. Output Y(k) and Set point Um(k)
(Extended PID/ST).
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Fig. 5. Output Y(k) and Set point Um(k)
(PID-B/ST).
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Fig. 6. Output Y(k) and Set point Um(k)
(Extended PID/ST).

V. Conclusions

A direct and an extended PID/ST’s for
single<input single-output linear second-order
plant have been designed. The direct PID/ST
which has a problem of the selection of the
initial estimation values is required to estimate
only 3 controller parameters. An extended
PID/ST is obtained with the Bezout identity
as underlying design method. And this con-
troller can be applied to nonminimum phase
systems, and has better performance than the
others in the sense of the classical figures of
merit, such as overshoots, settling time, and
rise time. The effectiveness of the proposed
self-tuning PID control algorithms has been
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demonstrated by computer simulations.

[1]

(2]

{3]

[4]

(5]

(6]

(7}

References

R. Ortega and R. Kelly, “PID Self-Tuners:
Some Theoretical and Practical Aspects,
IEEE Trans. on Ind. Elec., vol, 1E-31, no.
4, Nov. 1984,

R. Iserman, Digital Control Systems. New
York: Springer-Verlag, 1981,

G.C. Goodwin and K.S. Sin, Adaptive
Filtering Prediction and Control, New
York: Prentice Hall, 1984,

JH. Kim, J.Y. Park and Keh-Kun Choi,
“D.C. Motor Speed Control Using Explict
M.R.A.C. Algorithm,” J. of K.LLE.E., vol.
20, no.6, Nov. 1983.

Do-Hyun Kim and Keh-Kun Choi, “An
improvement of convergence rate of
direct model reference adaptive control
systems,”” AMSE conference: Minneapolis,
Minnesota (USA), Aug. 1984,

L. Praly, “Towards a Globally Stable
Direct Adaptive Control Scheme for Not
Necessarily Minimum Phase Systems,”
IEEE Trans. on Automat. Contr.,
AC-29,no. 10, Oct.1984.

H. Elliott, “Direct Adaptive Pole Placement
with Application to Non-minimum Phase
System,” IEEE Trans. on Automat. Contr.,

vol.

19865

(8]

[9]

[10]

[11]

[12]

[13]

(14]

TH BEFIBREWRYGE $£ 238 & 4 %

vol. AC-27, no. 3, Jun.1982.

R.Lozano L., “Convergence Analysis of
Recursive Identification Algorithm with
Forgetting Factor,” Automatica, vol. 19,
no. 1, 1983.

R. Lozano L. and G.C.Goodwin, “A
Globally Convergent Adaptive Pole Place-
ment Algorithm Without a Persistency of
Excitation Requirement,” IEEE Trans.
on Automatr. Contr. vol. AC-30, no.8,
Aug., 1985,

D.M. Auslander et al.,, “Direct Digital
Process Control: Practice and Algorithms
for Microprocessor Application,”” Proc.
IEFEE, vol. 66, Feb., 1978,

1.D. Landau and R. Lozano L., “Unifi-
cation of Discrete Time Explicit Model
Reference Adaptive Control Designs,
Automatica, vol. 17, no. 4, 1981,

G.J. Bierman, Factorization Method for
Discrete Sequential Estimation. Academic
Press, New York, 1977.

Jong-Hwan Kim and Keh-Kun Choi,
“Model Reference Adaptive Pole-Place-
ment Controller of Nonminimum Phase
Systems,” J, of K.LE.E., vol. 22, no. 6,
Nov. 1985.

%3, AAE, “PID #7) 2719 AA, ‘i3
Aapgata], AlEAlol sz o Alxg od73 5
5 =14, 949, Al23, 19859 9€

E 1

1ok

o~
=

(444)



