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Abstract

This paper presents a direct adaptive control scheme for nonminimum phase systems of

which controller parameters are estimated from the least-squares algorithm, and some addition-
al auxiliary parameters are obtained from the proposed polynomial identity equation. Integral
action is incorporated into the adaptive controller to eliminate the steady-state error, and to

satisfy a condition of the unique solution for the polynomial identity as well.

I. Introduction

Recently, significant progress has been made
on the problem of direct adaptive control for
nonminimum phase systems. In [1], this con-
trol scheme needs the polynomial factorization
or a non-linear identification procedure. With
a standard linear parameter estimation Elliott
[2] resolved the above problems. However,
this scheme arises in arbitrary pole placement
and requires the estimation of more parameters
than those effectively needed for control.
These extra parameters are those of a partial
state predictor. Allidina and Hughes [3]
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resolved the problems of [1] and [2] with a
self-tuning control structure. Their scheme
merely requires the solution of a polynomial
identity. The problem of this scheme is the
introduction of unknown polynomial. And
also, Praly [4] resolved the problems of [1]
and [2] with a bilinear estimation. However,
proposed bilinear parameter estimation pro-
blem leads to a computational burden. This
paper presents a direct or implicit adaptive
control structure for single-input single-output
nonminimum phase systems. Here we intro-
duce a polynomial identity which together with
the Bezout identity resolves the above pro-
blems. And also, an integrator is introduced
into the adaptive controller in a straight-
forward fashion to eliminate the steady-state
error and to satisfy a condition of the unique
solution for the polynomial identity as well.
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To estimate controller parameters a least-
squares algorithm [5], [6] is used. Hence a
convergence theory in [6] can be applied
equally to our scheme, Section II describes
the controller structure. Section III presents
a method for estimating controller parameters
and we mention a convergence problem. In
Section IV, a computer simulation study is
presented demonstrating the feasibility of
controlling unstable phase
systems discussed in [6].

nonminimum

II. Design of Direct Adaptive Control Structure

We consider here a causal feedback
control law with the integral action:
S(a!) Uk) =R (a™) e(k) (1
where
S@h=(1-q") (1+ 5,971+ —+5 . q7°) (1)
R(@1)= 1+ 1ot ryq 4 -+ 1 a™ (1b)
e(k) = Um (k)-Y (k) (1c)
q’! is the delay operator, Y(k) is the

plant output, U(k) the plant input, Um(k)
the set point, and e(k) the tracking error.
Consider a  single-input  single-output,

discrete, time-invariant plant described by

A YK =q9B(@HUK) ; d>0 (2

where A (q'l) =1+a, ql+—+a q ™ (2a)

na

B(q@ 1) =bo+bqt+—+ ban'nb (2b)

We will use the following assumptions.
Al : A and B are relatively prime polynomials.
A2 : na, nb, and d are known.

Let us introduce the partial state Z(k),
then this plant can be equivalently represented
by the controllable backward shift operator
representation.

A (q™h) Z(k) = U(k) (3)
Y(x) =q9B@@!) Z(k)

Application of the control law (1) results
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in the following closed-loop system.
S(a™M) A@@™) Z(k) = S(a™) Uk) 4

=R (g} Y(k)+R(q™!) Um(k)
= —q9B@R(@HZ(K)}*+R(q!) Um(k)

Then, (3) can be written as

(A@YHs@H+a9R@H BG@) Z(K) (5)
=R(q’!) Um(k)

Y(k)= a9B (a1) Z(K)

Let C(q'l) be a monic asymptotically stable
polynomial of order nc whose zeros represent
the desired closed-loop pole locations for (5).
These can be assigned provided S(q’1) and
R(q™!) satisfy

A@Y s@+a 9B R@ ) = @) (6)
where

ClaMH=1+ ¢y at+—+c a"° (6a)

Since A (q'l) and B (q-l) are coprime, a
unique solution for S (g’!) and R (q’1) always
exists under the condition of ns=nb+d—1,nr=
max (na, nc-nb-d) [7]. In this case, it is clear
from the assumption Al that B (q-l) must have
no root at q=1.

When (6) holds, (5) simplifies to

C@HZ =R (q")UmK) (7

Y ®)=q9B@HZEK

Thus after cancellation the closed-loop
transfer function relating Y(k) and Um(k)
becomes

-d -1 -1
B(q )R (q)
- q q . q (8)
C(q™)

Y (k)
Um(k)

Since A (g”!) and B (q’1) are coprime, there
exists a unique pair of polynomials h(q"!)and
k(q’!) of orders nh=na—1 and nk=nb+d—1, respec-

(446)



Direct Adaptive Control Scheme with Integral Action for Nonminimum Phase Systems 29

tively:
h@)=he +hyql+—+h g™ (9)
=koh(qg!)
k(@D =ko +kyal+ —+k ,a™ (10
=kok(q™)
which satisfy the Bezout identity
a9B@H h@H+A@H k(@ =ko (11)
when (11) holds, (6) can be written as
A@MS@H+aIB@HR@E@Y (12)

=~ q 9B +(1/ke)a 9B(@)n(gH @)
+(1/ko) A(@Y) k(@) C (g

where
R'(@)=R(qH -1 (12a)
Multiplying (12) by Z(k) and using (3) yields

A@@HS@HZ®+q9B@HR @HZE)

= —q9B(q") 2(K) (13)
+(1/ke)q™9B(g)h(a™HC(a HZK)
+(1/ko)A(G Hk(aH)C(a HZ(k)

Y(k)=—S (@) UK -R'(@H Y&  (14)

+(1/ko)h (@) C (g™ Y(k)
+(1/ko) k (@) C(q)) U(k)

Then (14) can be written more compactly as

Y(k) = PT¢(k) (15)
with
o) = [ ¢1 (K); 93 () 1T (152)
P=[P ;P 1"
where

#T(k) = [ (¢! = 1) U(k—1) — (g} 1) U(k—ns)
~Y (k) ~~ ~Y (k—nr)] (15¢)

¢3(k) =1 C(q™") Y(k) — C(q!)Y(k—nh)
C(q!) Uk—1) — C(q’!) U(k—nk)

(Cl@H~1+q1) Uk)] (15d)
T
Py =[s —s To—1,] (15¢)
Py =l hy-—h/y ki—k/ 1] (15f)
and
h,
hi=—— ;0<i<nh :
1 Ko
k;
ki=— 1< j < nk (15g)
J ko

Then a linear regression form can be obtain-
ed for the parameter vector P. Note that in the
control law (1), integral action is incorporated
into the adaptive controller in a straightforward
fashion. And also (6) completely characterizes
a fixed compensation scheme for the arbitrary
pole assignment when A (q™!) and B (q"!) are
known. However, this control scheme requires
the estimation of more parameters than those
effectively needed for control. This leads to a
computational burden. And the insertion of
the Bezout polynomial identity into the poly-
nomial design equation arises in arbitrary pole
placement.

Now, let polynomials h (q'l) and k (q'l) be
defined from

C@@MHh@hH=A@H+kR(@D

C@M k(@) =koS(a1)—q9B@?)

(16)
)
which are derived from (6) and (11) under the

condition of nc < 1. These equations can be
written as

S@Hhr@H-R@HKk@H=1 (18)

By the above equation, all the open-loop zeros
are retained. Then the resultant closed-loop
system satisfies:

Y(k) a9B@@™)

R(g'H) Um(k)

(19)

C(a™hH

H

U(k) INCRD)

(447)
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The auxiliary parameter vector P, can be
determined from (18) using Py which is to be
estimated. The proposed identity is similar to
that of Allidina and Hughes [3]., However,
in this scheme the identity is derived from
the pole assignment equation and the Bezout
identity, and the introduction of unknown
polynomial can be avoided. Also, the above
equation is solved relatively straightforwardly
and does not impose a severe computational
burden.

III. Derivation of the Adaptive Law

Since the plant parameter a; and b. are
unknown, it is natural to replace the vector
P by adjustable parameters vector P(k) which
will be updated by the adaptation mechanism
and the identity equation (18). To evaluate the
deviation between the plant output and set
point, we introduce the following criterion
function:

k -
Iky=% Z[YG) -6T () PK) 12 (20)
j=1

The estimate l3(k) is determined so that
the criterion function J (k) becomes minimum
at each k. Letting the gradient of J (k) with
respect to f’(k) be zero and employing the
matrix inversion lemma yields the following
recursive equations.

P, (K)=P, (k— HL(K) [Y(K)—¢; (K) TP, (k—1)]

(21)
F(k) = [ I — L(K)$; (K)T] F(k—1) (22)
L(k)=F(k— )¢, (k) / [ 1+¢; (K)TF(k—1)p; (k) ]
(23)

where
Y(K)=Y(k)—¢3 (k) P (k-1) (232)

The auxilliary parameter vector f’2 (k) is
to be found from (18) using f’l (k) estimated
from the above least-squares algorithm. For
general, linear, discrete, time-invariant, de-
terministic systems, the convergence pro-
perties of a least-squares algorithm for indirect
adaptive control are presented in [6]. Al-
though our scheme is designed to estimate
the controller parameters directly, it is impor-
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tant to note that their convergence theorem
can be applied equally to our method.

IV. Computer Simulations

The following two examples illustrate some
features of the algorithm. upUT factorization
method [8], [9] was used throughout for the
estimation of the controller parameters. The
following systems were discussed in [6].

Ex. 1 : The following system is considered:

A1) =1-2.0q71+0.99q2 (24)

q9B(q!) = q"1(0.5+1.0q°1) (25)
The following conditions were used

C@hH=10 (26)
Um(k) = 1.0 0<k < 30 (27)
=-1.0 30<k <60

Initial condition of i’l was taken as [1.2 0.9
~2.6 1.01T, and initial condition of P, was
given from (18).

Ex. 2 : Consider the following system:

A@hH=10-12q" (28)

a9B(q 1)y = q1(1.0-3. 1g142.292)  (29)
The following conditions were used

C(@hH=1.0 (30)
Um&)= 1.0 0<k <60 (31

Initial condition of 131 was taken as [152.9
—293.1 —-152.1 159.9]T, and initial condition
of f’z was given from [18].

We have considered very difficult examples
presented in [6]. Fig. 1 shows the output and
input signals and the estimated controller para-
meters for Ex. 1. And Fig. 2 shows the output
and input signals for Ex.2. From the computer
simulation studies we can see that proposed
controller can be also used in the control of
nonminimum phase systems.

V. Conclusions

In this paper we have presented a direct



Direct Adaptive Control Scheme with Integral Action for Nonminimum Phase Systems 31

QuTPUT

-2.00

Bl

INPUT

PARAMETERS

€.00

Y

2.00
1

~6.00

12.00

4.00
1

-4.00

g1
&
f T T T T T T T T T
0 10 20 30 50
STEPS
a
<
o© P4
1 S 1P3
A P2
o] a Pl
< PSP ? e ve— v —
N|FZ;_ —5
o
=4
e
a
3
VT 1 T L T T T T T
0 20 30 50 60
STEPS

Fig. 1. (a) Output for Ex. 1.

OUTPUT

12.00

(b) Input for Ex. 1.

(c) Estimated controller parameters

for Ex. 1.

Max : 472.

o

<]

-

;

8

o Min : -352.

T T T T T T T T V—‘

Q ta 20 30 50 60
STEPS

°

2

o ¥ax : 185

: {

34

A

AT~ -

-

T

o

3

« Min : -151.

T T T T T T T T T T T T

0 10 20 30 50
STEPS

Fig. 2. (a) Output for Ex. 2.
(b) Input for Ex. 2.

(449)

scheme for adaptively controlling linear time-
invariant  discrete-time single-input single-
output systems. This controller is applicable
to either minimum or nonminimum phase
systems. In this scheme, a polynomial identity
equation has been derived from the pole place-
ment equation and the Bezout identity, and
an integrator has been introduced into the
controller to eliminate the steady-state error
and to satisfy a condition of the unique solu-
tion for the polynomial identity equation
as well. As a result, computational burden can
be reduced. Examples illustrating the perform-
ance of the algorithm have also been given.
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