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Design of a Guaranteed Cost Controller for a Class

of Systems with Uncertain Parameters
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Abstract

This paper describes a method to design a guaranteed cost controller for a system with un-
certain parameters. The design procedure consists of defining an arbitrary function which
satisfies certain condition and minimizing it over the control input. When the method is
applied to a class of linear systems with uncertain parameters, a Riccati equation with addi-
tional terms results. A simple example is presented to illustrate the usefulness of this method.

1. Introduction . .
Numerous design methods for this type of

A control problem is to determine a control controllers have already been proposed. The
which minimizes a given cost functional and minmax approach [1] glves. the mln}mum
satisfies all state and control constraints. If, guaranteed cost but often requires complicated
however, there are uncertainties in the system comPutanon. The sens1t1v1-ty approach [2] is
parameters, the minimization of the cost applicable to the systems with small parameter
functional over the control input cannot be uncertainty.  The stability approach [3-8]

carried out normally. Consequently, the design is conf:erned with on.ly system stability. .
of a controller for a system with these un- This paper describes a method to design a

certain parameters requires the solution to a guaranteed cost controller for a system with
modified problem uncertain parameters which are not completely

determined by measurement or vary within
given bounds. Design procedure consists of

FIEEE, ATABK BFISH defining an arbitrary function which satisfies
(Dept. of Elec. Eng., Seoul National Univ.) certain condition and minimizing it over the
Bt 198652 2 F) 18H control input.
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Applying it to a class of linear systems with
uncertain parameters yields a Riccati equation
with additional terms which are easy and free
to construct.

Finally, a simple example is presented to
illustrate the usefulness of this method.

II. General Approach

The system with uncertain parameters can
be described by

x(t) = f(x(t), u(t),q(1),t) @8]
where x(£)ER" is the state, u()ER™ is the
control, and q(t)ERT is the vector of uncertain
parameters constrained to lie within the com-
pact region £2.

The cost functional is given as
t
F=h(x(tp,tp + | (ED.uD.aM.0dt ()

where h(x(tf), tf) represents the terminal cost
and the integral represents accumulated cost
along the path.

The problem is to design a state feedback
control law

u(t) = v(x(t), t) 3)

such that the cost J does not exceed a number
V for any allowed variation of g(t). In this
case, V is called a guaranteed cost for the
system starting from x(to) at time to, and
v(x(t), t), tG[tO, tf] is called a guaranteed cost
control,
Lemma I1.1

Let F(V(x(t), t), x(t),u(t),t) be an arbitrary
function satisfying

F(V(x(1),1),x(t),u(t),t) 2 g(x(t),u(t),q(t),t)

L OV(x(D),D)

f(x(t),u(t),q(t),t)
0x

+ OV(x(1),1)
ot

“)

for all q(t)€£2, x(t), u(t), and t€[t0, tf] , where
V(x(t),t) is a scalar function with continuous
first partial derivatives. Let v(x(t),t) denote
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the value of u(t) that minimizes F(V(x(t),t),
x(t),u(t),t).

Then V(x(tg), to) is a guaranteed cost, and
v(x(t),t), tG[tO,tf] is a guaranteed cost control
for the problem defined by (1) and (2), if the
following equalities are satisfied;

F(V(x(1),t), x(t), v(x(t),t),t) =0
for all x(t) and tE[tO,tf] (5.3)

V(X(tf),tf) = h(X(tf), tf) (5.b)

Proof: Combining (4) and (5.a) gives

g(x(1),v(x(1),1),q(t),t)

+ OV(x(t),t)
0x

+ V(D)) <o
ot

f(x(t), v(x(t),1),q(t),t)
(6)

for all q(t)€S£2, x(t), and tE[to,tf]. The condi-
tion (6) can be written as

dV(x(t), 1)
- —dt —=2g(x(1), v(x(1), 1), q(t),t) (7)

Integrating (7) with respect to tE[tO,tf] gives
V(x(tg).tg) — VIx(tp.t)
(8)

t
> f o000, vx(D.0.a0.0)
0

Combining (5.b) and (8) and rearranging terms
give

t
V(x(tg),tg) Zh(x(tp)te) + ftof g(x(t),
v(x(1),t), q(t),t)dt (9)

Hence, V(x(to),to) is a guaranteed cost, and
v(x(t),t), tE[tO,tf] is a guaranteed cost control.

Remark I1.1: The guaranteed cost control
v(x(t),t) proposed by Lemma IL.1 is not unique
for a given guaranteed cost V(x(to),to), because
that Lemma II.1 is only a sufficient condition
and that the function F(V(x(t),t), x(t), u(t),t)
can be defined almost arbitrarily.

Remark I1.2: The stability analysis for this
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type of problem is made by Chang and Peng[ 9}
in the sense of Lyapunov[10].

II. Application to a Class of Linear Systems
with Uncertain Parameters

1, System Description

The linear system under consideration is
described by
n n

x(t)—[A0+ 2 E A, iTi (t)]x(t)

+[Byt+ i§1 j§1 Bys(Dlu®)  (10)

where the uncertain parameters are constrained
by

Irij(t)l <1 i=12,.., n;j=12,...n (1l.a)

Isﬁ(t)l <1 i=1,2,.., m;j=12,..,m (11.b)
for all tG[tO,tf] The matrices A and Bij
are assumed to be of the form

Aij = dijeij i=1.2,...,, n;j=12,..,n (12.a)

Bij = fiigii i=12, .., m;i=12, ..., m(12.b)

where d.€R" and f.€R™ have 0’s in all but
the i-th positions, an(f e..€R™ and g ER™ have
0’s in all but the j-th positions.

Remark I1I.1: The decompositions required
by (12.a) and (12.b) are not unique. This fact
may be utilized by the designer.

In the sequel, we will use the following de-
finitions;

=1 j=1 i (13.a)
n n

EaZ 2 e (13.b)
n n .

FeZ 2 G (13.0)
m m ,

Gélgl j§1 Si (13.d)

The matrices defined above are all diagonal.
The cost functional is given as
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t
1= L cprxap+ L | tfolx'(t)ox(t)
+u'(t)Ru(t)]dt (14)

where H and Q are symmetric, positive semi-
definite matrices, and R is a symmetric, posi-
tive definite matrix.

2. Design Procedure

We will find a guaranteed cost solution of
the form

V(x(t),1) = % X(DK(D)x(1) (15)

where K(t) is a symmetric, positive definite ma-
trix for all tG(tO,tf).

Lemma IIIL. 1
Let F(V(x(t),t),x(t), u(t),t) be defined as

F(V(x(t) t),x(t),u(t),t)

A

din

[x'(t)Qx(t) + u’(t)Ru(t)}
x'(DK(t) [Agx(t) + Byu(t)]

+ o

+%[x’(t)K(t)DK(t)x(t) + X()Ex(t)
+ x (DK (FK{)x(t) + u'(t)Gu(t)]
+i_ X (OK(Dx(t) (16)

Then the condition (4) is satisfied.

Proof: The right-hand side of (4) becomes

lthuthal) 1)+3V_(>5§:Lilf(x(t) (),tHaV%t(t t

= 3l Qe+ WRs (0] 4 (K ()

(A+ZEA, v k() 8o+ 5 EBy s, (0
R 0x0) a7
In order to obtain the upper bound of the

terms containing uncertain parameters in (17),
we will use the following inequality [11];
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n n
X(DK({) Z T A r(Dx(t)
i=1j=1 479

n n

= iEl jEI x'(t)K(t)dijeijx(t)Tﬁ(t)
n n

<& E] KOK()dgex(®

o

s

1 LU .
<2_i ]EI X (t)K(t)dijd ijK(t)x(t)

V)

+
I\J|»—-

n
Z jz—:l X (t)eﬁeijx(t)

= %x'(t)K(t)DK(t)x(t) + %x’(t)Ex(t) (18)

One can also derive a similar inequality for the
remaining term. These inequalities prove the
lemma. ||

Based on Lemma II.1, a guaranteed cost
control v(x(t),t) can be found as

u(t) = v(x(t),t) = —(R + G)'IB(')K(t)x(t) (19)

by differentiating (16) with respect to u(t).
Substituting (19) into (16) and rearranging
terms give

F(V(x(t),t) x(t),v(x(t),t),t)
_ 1, ,
= ) X (t)(K(t)A0 + AOK(t) +Q+E
— K(1) [B4(R + G 1B — (D + F)IK(t)
+K(t) ) x(t) 20)
Then the condition (5.a) and (5.b) are implied

by the following;

—K(t) = K(DAy+ AQK(D) +Q +E
—K(1) [By(R + G) 1 By— (D+F)IK(1)

2l.a)
K(tf) =H (21.b)
Remark II1.2: If the matrices D and F are

chosen so that BO(R+G)'1B6—(D+F) remains
positive semidefinite to ensure the positive
definite solution of the Riccati equation (21.a)
for all t€[t0,tf), the feedback control (19)
guarantees that the cost (14) will not become
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larger than % x’(tO)K(tO)x(tO) for any allowed
variation of uncertain parameters.

IV. Hlustrative Example

Let us consider the system and the cost
functional given by (10) and (14) respectively,
where

v D 9w
LS

and | 15 ()] <1 for all t €[0,15]. The initial
state is given by

0
J R=1 (22)

2
x(0) = H (23)
1

If the matrix A,, is decomposed as

0 0
Ap=dpeyp = } [ } 24)
0.8] |2.

the Riccati equation (21.a) yields the solution
as shown in Fig. 1.

5.4220
84
% @k (B
@ ko (1)
s
34
< AT k(D)
3.2532
g T e
=84
b
<
81 1.6667
s
34
<
g
"%
©.00 2.00 4.00 &.00 @a.00 10.00 12.00 14.00

t [oec)

Fig. 1. Solution to the Riccati equation(21.a);

_[ki(t) ko(t)
k(t)ilkz(t) ks(l)]

The cost yielded by the control (19) is shown
in Fig. 2 as a function of parameter uncertainty
r,; which is assumed to be constant but un-
known,
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Fig. 2. Calculated cost as a function of constant

parameter uncertainty I'j.

We observe that the cost does not exceed the
guaranteed cost

1
5 x(0K(0)x(0) = 12.5508 (25)

for all 1€ [—1,1].

For comparison, it is possible to determine
the optimal control for each fixed choice of
ry2, which gives the curve marked by circles
in Fig. 2. Furthermore, it should be noted
that the guaranteed cost control (19) is not
unique for the guaranteed cost given by (25).
For example, a constant feedback gain control

u(t) = —1.16x1(t) — 5.07x2(t) (26)
also yields a cost less than 12.5508 as is illus-
trated by the curve marked by triangles in
Fig, 2.

V. Conclusion

This paper described an approach to
determine a guaranteed cost control satisfying
a sufficient condition. Current method is more
flexible than the previous one {9] in the sense
that a part of the procedure is almost at the
designer’s disposal.

Specifically, applying this method to a class
of linear systems with uncertain parameters
results in a Riccati equation with additional
terms which are easy and free to construct.

A simple example was presented to illustrate
design procedure, which produced a guaranteed
cost controller for a system with large para-
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meter variation,
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