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Abstract

The lasing wavelengths and gain characteristics of the array modes of channel-substrate-
planar (CSP) lasers are presented. The gain values of array modes are determined from the
complex coupling coefficients calculated using the fields of neighboring elements of the array.
The computations show that for index guided lasers which have fields that are almost real
valued, or have only slight phase curvature, the highest order array mode will have preferred
oscillation. The inphase or fundamental mode, which produces only one major lobe in the
far-field radiation pattern, will have the lowest modal gain of all array modes. Some of the
devices discussed have modal gain differences of less than 10 cm-1 be ween the highest
and fundamental modes. For optical field confinement factors of about 20%, this gain
difference corresponds to active layer gains of approximately 50 cmt,

Introduction
on a single wafer, {1-5] Laser arrays are be-

The development of injection laser techno- coming popular because many applications
logy has progressed over the past several years require large amounts of optical power which
to a level of sophistication so that linear arrays cannot be obtained from single contemporary

lasers. Typically, the emission power level from
an injection laser is related to the volume
occupied by the lasing mode. Broad area device
emits high power, but its optical mode stability
is not good. These instabilities occur because

of individual laser elements can be fabricated
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The analysis of injection laser phased arrays
using coupled mode theory has been recently
presented. [8-10] However, these earlier
analyses have included only the effects of
passive systems, i.e., gain and loss considera-
tions of the array were not analyzed. However,
a similar analyses using a different approach
have been presented [11,12]. In this paper we
discuss the results associated with the analysis
of phased arrays when both the passive and
active nature of the waveguide are included in
the problem, In particular, in a passive struc-
ture the coupled-mode analysis gives only a
splitting of the propagation constant which
relates to the possible mode oscillation wave-
lengths. In an active structure, both the gain
and refractive index distributions affect mode
characteristics; the wavelength splitting and the
gain splitting of the individual laser modes,
The gain splitting is important because it
determines individual array mode. In this paper
we will address the array mode gain splitting
from an analysis of the coupled-mode equa-
tions,

Array Element Characterization

A discussion of the coupled modes can be
effected provided a detailed analysis of the
optical field of the individual elements is fully
characterized. To produce a noticeable degree
of coupling it is necessary that each element be
nearly identical as possible, First, we put into
context the character of the individual
elements. The single element will be described
by a field distribution ¥"(x,y,z) where the
superscipt pertains to the n-th device, If the
individual lasers are separated by a distance s,
then the array is uniformly spaced. The overall
array aperture size is a multiple of the spacing.
For example, for N elements, the aperture size
is Nx s. On the other hand, if the elements are
located at points y==3S,, then the aperture size
is 8,—S8y. Because the elements are identical,
the fields satisfy the condition ¥'(x, y+s,,) =
U"(x, y+8,,). The optical field of the m-th
element satisfies the wave equation

P k™ (x, y) U= (1)

where the wave function is written as

(937}
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U™x, y, z)=u(x,y) v™y) exp(—~7n2) (2)

where u™(x,y) describes the transverse (to the
junction) profile while v™(y) governs the lateral
mode profile. (The index m pertains to the m-
th element.) The transverse field function
u™(x,y)has a y-dependence which is due to
layer thickness variations found in CSP lasers.
The wave function v™(y) satisfies

VT A [A—on (0) + KT ™) K2 () 0" 0
(3)
where [, isthe complex optical confinement

factor of the field to the active layer, and k7
is the perturbation of the active layer dielectric
constant from its passive value. The quantity
Yon (Y) =a.(y)+jkineo(y) where o,(y) and
n.(y) are the effective absorption coefficient
and effective index of refraction in the lateral
direction. (The index m is dropped from a,
and 7. expressions because we assume identi-
cal array elements.) For example, in Fig, 2 we
show a.(y) and 7n,(y) as a function of lateral
position for two element types used for the
fabrication of arrays, The basic structures with
material parameters as given in table 1 are
shown in Fig, 1. It should be noted that these
structures exhibit index guiding along the
lateral direction. The dielectric variation of the
active layer for the single element m is

nzg (u)

Ey) =2n,~ ni+ j— (4)
where <nl is given by the ad hoc relation
{81.

np= 8:1—&‘ (5)

()

where the proportionality constant R is taken
as-2. This equation simply ties the index change
at a point in the active layer to the gain at that
position using a linear relationship. Including
both the effective complex propagation con-
stant and the purturbation of the active layer
dielectric constant from eq. (3) and eq. (4),
the total dielectric variation (of the single
element m) along y becomes

E™(y) =I{ny)]* lﬁe (W) +2F’"(y)n2Vn;"]
neag(y) I (y) ng™(y)
R | (6)
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Fig. 1. The geometries of the CSP laser struc-
tures used for the calculations. The
contact and thus the applied current is
extended uniformly over all elements of

the array.
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Fig. 2. The effective index and absorption
coetficient profiles for the CSP element.

For deivces with a uniform active layer such
as in the CSP lasers, the active region gain
g™(y) is independent of lateral position
provided the stripe contact is much larger than
the taper lengths of the cladding n-layer.
Nevertheless, the variations of the two terms
in the imaginary part of A£™ arey dependent
so that both the real and imaginary parts of
the dielectric constant are y dependent.

Table 1.

Optical Constants

Absorption
Region Refractive Index Coefficient (em ')
1 3.41 10
2 3.62 =
3 3.62 10
4 3.64 5000
Array Formalism

To discuss the total array field it is necessary

(938)

to solve Maxwell’s equations for the coupled
lasers which we assume are identical. The
electric field of the individual devices is com-
posed of solutions of the wave equation dis-
cussed in the previous section. Assuming the
fields are polarized along y as in Fig. 1, we have
for the individual laser (in-th element)

Eyn=u™(x,y) v™(y) exp(~7n2)
= Com eXp(~7mz) (7)

These modes are almost transverse electric
field (TE) as initially described by Marcatilli,
[13] The largest transverse magnetic field
component Hxm—~ tj%};ﬁj;“ is polarized
along x. The field in Eq. (7) represents a wave
propagating in the positive z direction. The
waves propagating in the negative z direction
also satisfy Maxwell’s equations. Solutions are
similar to those of Eq. (7), but ¥=» is replaced
by —7» and the magnetic field component
reverses its direction. We denote the major
transverse field components of backward wave
as ;7 and Hg . The coupled - mode
analysis of the array field is effected by writing
the total field as a linear combination of fields
of the individual lasers [14]:

E=3A"(2z)En (8a)
H=Z.A™(z) Hn (8b)

Substituting Eq. (8) into the pair of Maxwell’s
curl equations gives

SAM X Ha— 7 (2 X Bu) [+ (2 % ) G

“—j(l)Eo k AmEm= 0 (98.)
T AT X By (2 X E) 1+ (2 X En) 2
+Jjwts AnHa= 0 (9b)

where k isthe array dielectric constant and <,
is the ftransverse vector operator. The two
above equations can be simplified, using the
field solutions for the single element in the
absence of coupling, to:

S A" ool k) Eut (2 Hm)%’—;" =0 (10a)

m

(2% Ea) G~ 0 (100)
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To reduce the z dependence in the field expres-
sions which contain the complex propagation
constant it is necessary to scalar multiply
Eq. (10a) by E,- and (10b) by H,- the back-
ward wave solutions. Upon integration, we
obtain the following set of coupled equations

da®

dz

kssn 1 . im
5 ij . ConA an

where the coupling coefficient Cam is

— —2jwesTn i

S S k—kn) @y -8nexpl (7a—tm) 2ldxdy
[ ] 2-1(e,xhy)— (e,— xh,—)]dxdy

Crm

(12a)

_ LS (k—kw) (umuvmvn) dxdy
Cm S/ it oM dxdy (12b)
Fn

where g, =yu"(x,y) v™(y) and hy="%
v x, y), v (y).

Fwie
If the array elements are

identical, then y,= ¥n, and the above coupling

coefficients simplify to

Since the dielectric sonstants and the field
expressions are complex quantities, the result-
ing coupling coefficient is a complex number.
The numerical values of C.» will be discussed
in a later section,

Array Modes

The array modes of a group of coupled lasers
can be obtained by solving the set of simultan-
ous given by Eq. (11). First, we address the
functional dependence of A™ with respect to z
since this affects array mode solutions. Because
A™ is a weakly varying function of z under
weak coupling, it is convenient to put

A™(z) =Al'exp(—0n2) (13)

It is obvious that for zero coupling, 6, = 0.
It is further important to note that if o, were
element dependent, it would be impossible to
establish the resonant condition simultaneously
for each laser element, Consequently, an over-
all array mode would not exist [8]. Thus,
array modes have &, as m independent so that

(939)
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the subscript will be dropped. Substitution of
Eq. (13) into Eq. (11) gives

= cm At Z—,Z?—A;e 0 (14)

so that the above equation reduces to the well-
known eigenvalue equation of the form

Ca=ua (15)
— 276
where u= _kZ_ZL the eigenvalue, a is the
corresponding 3igenvector
A;
A
a=| A4 (16)
AY
and the bidiagonal matrix C is
C=[0 ¢, 0--0
Cy 0 cx0
0 ¢ G0 (17)
: : P 0
0 0 00

Because C is bidiagonal, a generalized secon
order difference equation for the eigenvalue
problem can be written as

Cnn IAJH’%' C,m”Ag““:,uA{,l (18)
(A fourth order difference equation results
upon extention of C to a quadiagonal matrix,
This occurs when a specific laser couples to 4
of its nearest neighbors.) Although Eq. (18)
cannot be solved in closed form, it can be great-
ly simplified once the array geometry is
specified. For example, when the elements are
uniformly spaced, all elements of the coupling
matrix are identical, i.e., there is equal coupling
to each nearest neighbor. Consequently, Eq.
(18) becomes

AP -%A;HLA;'”: 0 (19)

where c=Cnpn=C,+JjcC, is the coupling
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coefficient, Now, by putting A?=Q exp (jn¢)
where Q and ¢ are unknown constants. The
resulting characteristic equation becomes

exp(—j@) — L texp(id) = 0 (20)

which yields a solution for the eigenvalue

u=2c cos(¢) (21)
Since Eq. (19) is a second order difference
equation, a second solution is Al=@Q exp
(—jng). To find the specific value of A7
we apply the boundary condition to the general
solution, written as

A7 =Qicos (nd) + Qysin(n ¢) (22)
which is a linear combination of the two
exponential solutions. Since we are interested
only in the A¢ valueslying in the range | <
n<N, we can place A)=A}"'--(. Substitution
into Eq. (22) vields

(N+D¢=pr, p=~1,2,3,~- N (23)
The integer p now corresponds to the array
modes; p = | is the fundamental, where as p
= N is the highest order one. The array excita-
tions become

n 0 sin RE
Apo— Q@ 5111(N+1 ) (24a)
where as, the eigenvalues become
e por '
up=2c COS<N+1 ) (24b)

The constant §, may be calculated from a
normalization condition. The value of

e *’2’;5“” represents the split of the pro-
pagation constant from that of the single
7. Hence, the array modes

element value,
have
ki pr
Vo= 7[ 1—c¢ _}%C()s( N‘ﬁ)] (25)
The wavelength and gain coefficient of the p-th

array mode are determined from the complex
coupling coefficient ‘and from the unperturbed

(940)
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single element. The value y=o+ jB where
(G=--2a is the normalized modal gain coeffi-
cient of the single laser element. In contem-
porary laser strucfures, B>>a. Thus, Eq. (25)
can be simplified

Y= ]B‘(%)[ C,-iCT]cos(:NP%) (26)

Here, Tie-
. 0
of refraction,

is the mode effective index
For ¢,>0, the wavelength of
the p = 1 mode is longer than that of a single
element laser, while for p = N, the array mode
wavelength is shorter than it. The mode oscilla-
tion wavelength and gain coefficient are

\(/&L;\,,A = ‘;;;rcos( ijl ) (27a)
o (Bl gE)

Note that for ¢,>0, the fundamental mode
(p = 1) is favored while for ¢; <0, the highest
order mode (p=N) lases.

The complex propagation constant 7, and
array excitation function given by Eq. (24a) are
sufficient to characterize the array radiation
pattern F,(#) in the junction plane. The
overall pattern in the lateral plane is the pro-
duct of the element pattern f(#) and the
array pattern function. Thus, the exact nature
of the element pattern which is the Fourier
transform of its facet field, need not be known
in order to compute the array pattern,

In simple diffraction theory where the
amplitudes of all elements are identical, the far
field intensity of a uniformly spaced array is

sin

13

sin{ﬁ;})

I(u

where 4= K,sinf. In the coupled mode theory
developed here, the far field intensity pattern
becomes
sinz’
(58"

Su
i 2 a2
smi - sm
( 2 /) 4

2(N+1)

S(N+Du _’Lz_)l’
2 2

Iﬁ(u) =
(29)

]
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For the case N > > |, the patterns of a uni-
formly spaced array with equal amplitudes
differ from that of an array with coupled mode
tapered amplitudes. Typically, arrays with
tapered amplitudes produce far-field beam-
widths which are larger than that for uniform
amplitudes. Also, array pattern sidelobes are
smaller for nonuniform tapers than for that
of uniform tapers. A detailed discussion of the
far-field patterns of the various array modes
is given by D. Botez [15] and D.E. Ackley
f16].

Coupling Coefficient

In this section we discuss the characteristics
of the individual laser elements and how they
couple to one another in the array environ-
ment, Because the CSP type structures have
lateral waveguides that are strongly developed
by both the real and imaginary parts of the
dielectric constant, the optical fields will be
complex. Consequently, the coupling co-
efficients as given by Eq. (12b) will be com-
plex. The propagation constant of a sirzlgle
laser will, therefore, split into g - ZkKu,
of complex numbers that represent the pro-
pagation constants of the individual array
modes. The imaginary part of the splitting
affects the lasing frequency while the real part
characterizes the array model gains.

From Fig. 2 we see that the CSP structures
have effective indices such that the modes will
be strongly index guided. Thus, the wave
functions have very little phase variation in the
lateral direction which means that the fields are
almost real valued. The evanescent fields will
have exponential decay which greatly affects
the coupling coefficients, In fact, the magni-
tude of ¢ will decay exponentially with respect
to element spacing. To get a rough estimate
of ¢, we assume that the lateral modes can be
characterized by a simple three layer slab
waveguide, As can be seen from the index
variations of Fig. 2, this assumption is relatively
good,

Figure 3 illustrates the calculated values of
¢c= ¢+ jc; as a function of laser separation, s.
These calculations were made for a series of
active layer thicknesses and material composi-

(941)
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Fig. 3. The coupling coefficient ¢=c.+j ¢; for
CSP type phased-array structures as a
function of element separation. The active
layer thickness d, is a parameter and the

active layer to substrate thickness d is

0. 3pm.

tions as given in table 1. The gain coefficient
of the active layer was adjusted so that the
modal gain coefficient of a single element laser
was 50 cm™ | sufficient to offset end losses, As
illustrated, when s > 7 um, the coupling co-
efficient is very small. For the case d,=0.08
pm, the effective index is illustrated in Fig. 2,
but for different d, values, the effect on the
lateral modes affacts ¢ in a profund way: as
d, increases, the lateral modes become tighly
bound, while for d, decreasing, the lateral
modes become loosely bound, This is in part
due to the sloping sides of the particular CSP
design,

Consider now the gain coefficient of the
array modes for d, = 0.08 ym and s =5 pm.
The resulting coupling coefficients are ¢,=0.2
x 10% and ¢.= —0.8 x 10™*. The wavelength
splitting is

(A=A 10 S

B v 1.6x10 cos( ﬁﬁ) (30)
and the gain splitting is

A pr . .

Gy-G— 3. SCOS(——H)CWL 31

The fundamental mode of a 10 element array,
has G,—G= —33cm™ while the highest order
mode has G,,—G=+3.3cm™,

Thus, the highest-order array mode will lase
because it has the largest gain coefficient. This
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means the gain of the active layer will be
smaller for the highest order array mode than
for the single laser operating without coupling.
Correspondingly, the inversion level will be
smaller than that of the isolated laser. From
the coupling coefficient versus the element
spacing, the main observation is the funda-
mental dependence of c¢ and s; that functional
dependence is exponential, (ref. Fig. 3). This
occurs because the field strength in a neighbor-
ing laser has an exponentially decaying fields.

Conclusion

In this paper we have presented an analysis
of injection laser phased arrays using coupled
mode theory. In the theoretical model it was
necessary to introduce the backward wave
solutions in order to reduce the z depenuence
in the expression of the coupling coefficient,

The exclusion of z dependence in the coupling
matrix simplifies the simultaneous differential
equations governing the coupled modes,

The results of laser coupling to only nearest
neighbors affords a simple solution to the splitt-
ing phenomena, The analysis can be extended
to include coupling to all elements of the array.
The coupling coefficients will be rather small
when distances are larger than about 7 um,
Thus, the models using only nearest neighbor
coupling appear to be rather accurate,

The calculation of the complex coupling
coefficient is useful because the complex pro-
pagation constant of array modes can be deter-
mined. Using lossless waveguide materials,
coupling coefficients relate only to the oscilla-
tion wavelengths, The model presented here
allows for the computation of both array mode
oscillation wavelengths and modal gains.

For wuniformly spaced arrays, the array
modal gains are distributed about the modal
gain of the isolated laser element, When the
imaginary part of the coupling coefficient C;
is negative, as is the case for the CSP laser
structures presented here, the highest order
array mode has the largest modal gain so that
it will reach threshold before all the other
array modes. On the other hand, the funda-
mental array mode will have the lowest gain
when ¢; is negative, Accordingly, it will

(942)
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require the highest gain at threshold, Physi-
cally, the highest order mode has fields with
differential phase shifts of 180° between
neighboring elements. Consequently, the
array mode will have a null value at midpoints
between the individual lasers. Since the nulls
occur in the high absorption region, losses
are minimized., On the other hand, the funda-
mental mode will not have field nulls in the
lossy regions and consequently, it will have
the higher absorption losses.
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