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A nonlinear theory is presented for the fluctuations of intermediates in the Brusselator near the critical point caused by diffu­sion. The method used is the two time scaling method different from the conventional method in the sense that a slight nonlinear effect is included in the initial time region where the linear approximation is conventionally valid. The result obtained by the nonlinear theory shows that fluctuations close to the critical point approach the value of a stable steady state or deviate infinitely from an unstable steady state, as time goes to infinity, while the linear theory gives approximately time-independent fluctuations. A brief discussion is given for the correlation at a time between fluctuating intermediates when the system ap­proaches a stable steady state.
Introduction

Recently, much attention1-6 has been 흥iven theoretically 

and experimentally to chemical reactions with instability since 

Lotka7 proposed in 1920 a simple model of autocatalytic 

chemical reactions which show sustained oscillations in the 

concentration of the autocatalytic species when open to a flow 

of matter through the system. Bray8 discovered this kind of 

sustained oscillation in an inorganic redox reaction. In 1952, 

Turing9 showed that stable spatial patterns can be obtained 

when chemical reactions are coupled to the process of diffu­

sion. Thus, he laid the foundation for a biochemical theory 

of morphogenesis. More recently a famous reaction, called 

the Belousov-Zhabotinsky reaction, which shows temporal 

oscillations and spatial patterns has been intensively studied 

by many authors.5-6 l0~n

The model, one of the models with chemical instability, 

to be considered in this paper is the Brusselator1, which was 

invented and carefully studied by Prigogine and his coworkers 

in the Brussels school. The reaction mechanism for the
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Brusselator is given by

&보

Q+Xi―J- X? + C,

2X\ +Xj —르* 3X],

X\ 丄 E, (L 1)

where R and Q are reactants maintained at constant concen­

tration, C and E are products, Xx and X2 are intermediates, 

and k/s are rate constants.

In this paper we shall discuss the effect of nonlinear terms 

on fluctuations of intermediates in the Brusselator near the 

critical point caused by diffusion. With a few exceptions, 

nonlinear dynamic phenomena can be studied only by approx­

imate methods12-17 in various fields such as statistical mech­

anics, hydrodynamics, chemical reactions, and etc. The 

approximate method to be used here is the two time scaling 

method12'14 which is one of the most widely used methods. 

In the two time scaling method the whole range of time is 

divided into three regions of time. The initial region of time 

is the range of time where the linear approximation is valid. 

The second region is the region in which the nonlinear effect 

becomes important and the system approaches a steady state 

(or equilibrium state). The final region is the region where the 

system stays at the steady state (or equilibrium state). The 

present two time scaling method is different from the con­

ventional method in the sense that a slight nonlinear effect 

is included in the initial time region where the linear approx­

imation is conventionally valid.

In the present paper, we discuss first the linear case for 

the Brusselator far from the steady state. Then, the nonlinear 

case is studied with the aid of the two time scaling method. 

Finally, the correlation at one time between intermediates is 

obtained when the system relaxes toward a stable steady state.

Theory

If we consider diffusion effects, the rate equations for the 

intermediates in the reaction scheme of eq.(1.1) can be writ­

ten as

3X\ 何,t)/dt =PL1 F% («, t) +如&

-此Q+，幻)K (r, £)+稣、(r, tyX2 (?, t),

dX2 0, t)/dt=D22 PlX2 (R £)+如QK (R i)

(2. 1)

where Z)n and D22 are diffusion coefficients for and X2, 

respectively. In order to simplify the above equations we in­

troduce the following transformations:

oTiR/h, 尸=시成/虹 c=知개*

旷(22)

Taking that dn is unity, the rate equations become

8X.(礼 t )/S,=广X】(r, r)+a- (1+尸)K &, r)

+ , T),

dX2 (rt = 0후卩'X* 侦, r)

— eXOXd (2.3) 

with the homogeneous steady state value

X： = a, X； =b2/ac. (2. 4)

Expansion in terms of yf = X, - Xz° leads to

dy(r, (2血湖+3为 *+汕北川1 (1, - DT

(2.5) 

where

y=（们，％）',虬,甘
（시기+尸-l,a 七 
（_廿，矿广一a七

Linear Case. Neglecting the nonlinear terms in eq.(2.5) and 

considering one dimensional diffusion for simplicity, we take 

the solution of the form y(r,r) = y(r) cos kx. Then eq. (2.5) 

becomes

,z, / - - 1, a2c \
이广 (2.6)

' - 8 k — m

Since the concentrations of reactants are kept constant, the 

controllable variables are 0 and k. Thus, the system can be 

stable or unstable, depending on the values of these variables.

If we carry out usual linear stability analysis23, the stabili­

ty criteria can be obtained as follows:

(蚪+1-尸)(研r+a'c)+a%七>0

a2c>(b-l)2 (2.7)

The first criterion which corresponds to the positiveness of 

the determinant of Me.k together with the second criterion en­

sures the real negative normal mode frequencies leading to 

the linear stability. As shown in Figure 1, the minimum point 

of the boundary between the stable and unstabe regions is the 

critical point of the system. At the critical point the variables 

k and 0 have the critical values of

kl = b- 1, ^c = aV~c/(5-1). (2. 8)

As 履2 and Qc are positive, the following conditions should be 

satisfied.

b>\. (2.9)

In order to analyze the asymptotic behavior of the solu­

tion of eq.(2.6) as L8 it is sufficient to find the eigenvalues 

and eigenvectors of 丿0.3 The eigenvalues of the matrix near 

the critical point are

At = ?? (。亠如)+。(£一 处) 허

人2=—b〔kc~ (6—1)2〕/0 — 1)+00 — “)

rj =2aVT (6- l)7[a2c- (6- I)1). (2. 10)

As shown in the above results, is positive or negative, depen­

ding on the value of 0, while 灼 is always negative. Let the 

set of the right and left eigenvect으s of the matrix belonging 

to the eigenvalue Ao be 0° and 妒,respectively. Then we 

have18

妒=(a2c/(& (1-6)], 1)T, 1)r

办 = 0T)호〔0-1尸-0/0-1), 1)

= (6-I)2)"1 (6 (6-1), a2c). (2. 11)

It can be easily checked that the eigenvectors satisfy the 

following orthonormalization conditions

4代& 허、、牝、 (2.12) 
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where daP is the Kronecker delta. Later we shall use the above 

conditions with respect not only to eigenvectors but also to 

position. Thus, the complete orthonormalization condition to 

be used is

rnjr/kc _
/ dx(0®3) cos lkcx cos mkcx=^a0 方次兀/虹

S, Z, m=l, 2, 3, "■). (2. 13)

The solution in the linear case near the critical point is

y (x, r) =〔A 妒 exp (Ax r) +B01 exp (人？ t )〕cos kcx. (2. 14) 

The fluctuations are stable when 0 is smaller than the critical 

value Qc according to eq.(2.10). Thus, the fluctuations not on­

ly remain finite but also, in fact, approach zero as When 

0 > 0C, the system is unstable and the first mode in eq.(2.14) 

becomes infinite as time goes to infinity. The region to be con­

sidered in this paper is near the critical point. In the region 

very close to the critical point where 8=凱 eq.(2.14) becomes

y (xf r)三 A。' cos kcx. (2. 15)

The above result shows that fluctuations are time-independent 

near the critical point, which does not describe the actual 

phenomena properly. Thus, to discuss the actual phenomena 

the nonlinear terms should be included.

Nonlinear Case. In order to study nonlinear stability for 

the Brusselator we shall apply two time scaling method. The 

whole range of time is divided into three regions. The initial 

region of time denoted by t0 is the range of time where the 

linear approximation is conventionally valid. In the present 

paper, however, we shall define the initial region as the region 

where not only the linear approximation is valid but also a 

slight nonlinear effect is included to obtain more accurate 

nonlinear effect. The second re응ion of time, Tlt is the region 

in which the nonlinear effect becomes important and the 

system approaches a stable steady state. The final region is 

the region where the system stays at the stable steady state. 

Let us scale the time and eigenvectors as

Tm = e a" r, m = 0, 1

U= W 早""j = L 2 (2. 16)

where e is a parameter to be defined later. We assume that 

fluctuations depend on t0 and T)through the amplitude of fluc­

tuations, A. That is,

y (x, ro, rj = 4 (r0, ri) <^lcos kcx, (2. 17) 

Applying the scaling relation to eq.(2.5) and matching terms 

in orders of e and e2, respectively, we obtain the following equa­

tions in the initial time region:

d(치«顿)T/d"=Mecm (2. 18a)

d(g, y2!)7<iTo = Mfict)Cc (i/nj y22)T

+ (2acyl2-hb2yll/a)y11 (1, - 1)T. (2. 18b)

Eq.(2.18a) is just the linear equation already discussed. From 

eqs.(2.17) and (2.18a) we can see that A is approximately in­

dependent of t0 in the critical region. That is, 二 A(tJ. 
Substituting eq.(2.17) into eq.(2.18b), we have the particular 

solution for (力成고2)，as (Appendix)

Si,版)'=A (rj1 "0牝3「' + 网％"厂 

xCos2Acx](l, - I)1； (2.19)

where Af-1 is the inverse matrix of M and g is given by

S= 〔2"姐 + 0/a) (2. 20)

The complete solution in the initial region of time near the 

critical point is

yT] ) = £ 4 Si ) 01 COS kcx4- £ 2A (匸1 ) 2g

X+ 矿 cos 2kcx), (2. 21)

with

妒=(/LIO, 1)T,阵(9a2c)-1(4a2c/(l-6),46-3)T.

(2. 22)

The solution is more accurate than the linear case in the sense 

that a slight nonlinear effect is included.

Now, let us define the parameter £ as

t2-\e-6c\, (2.23)

From the above definition Ai is given as

Ai = \ sign 77 = si밍n(S — L). (2.24)

Substitute욤 eq.(2.21) into eq.(2.5) and matching terms of the 

third order in e, we have

[dA cos kcx=7j (“)cos kcx

+ A (ti)3 (〔gac +

+ (b'g/a)少(3c/4)。；？；〕cosfccx+ [gac 03； +姐姐)

+。허g/a) (c/4) 破矶〕cos 3幻% } (1, - 1)T. (2. 25)

Expressing the nonlinear parts in terms of the linear combina­

tion of 01 and 扩 and using the orthonormalization condition 

응iven in eq.(2.13), the following equation is obtained:

Figure 1. Stability diagram. Figure 2. The dependence of A(tJ on time t,.
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dA (r-i) /dr ! = 7)A (rj — (tJ3, (2.26)

where

8=妥+癘、)(g〔ac 0：妮+少出；+2以") 

+按©，：//+3<渺；'損/4}/0，3：-。拇，；).(2.27) 

Rewriting d in terms of constants given in eq.(2.2), we obtain

8= (a4c3/36Z>2) [2 (4护+76—15)

+27(3—1)2〕(b-i)-，〔a七一 0—1)2〕-】. (2.28)

The coefficients, rj and d, can be positive or negative. If rj 

and d are positive, ±(r)M)'/l correspond to stable steady states 

and A = 0 is an unstable steady state. The amplitude of fluc­

tuations approaches the stable steady states as r( goes to in­

finity. In the case that ° and d are negative, A = 0 is a stable 

steady state and 士 (，i/d)'方 are unstable steady states. When 

the initial state is between and 一(”/d)气 the amplitude 

becomes zero as tl。。. Otherwise, A becomes divergent. 

When z] > 0 and 6 <0, there is only one steady state which 

is unstable. Thus, the amplitude deviates infinitely from the 

unstable steady state. If rj < 0 and d > 0, the system has a 

stable steady state corresponding to A = 0 and approaches the 

stable steady state as time goes to infinity. The dependence 

of amplitude of fluctuations on time is shown in Figure 2.

Corr이ation Between Fluctuating Intermediates. Let us 

consider the correlation between fluctuating intermediates in 

the second region of time when the system relaxes toward 

a stable steady state. When no stable steady state is obtain­

ed, higher order terms become important. Such cases will not 

be considered in the present paper. The correlation at one time 

between 乂 and is

<yt (rjt/j (rj > = <A cos2Acx, (2. 29)

The correllation depends on time through <A2>. To discuss 

<A2> let us consider that A is a stochastic rather than deter­

ministic variable. Then, the following Fokker-Planck equa­

tion is satisfied21

BP {A, —。〔(“厶―Ti)〕/

+D3 沪(A, rJ/SA2 (2. 30)

where D is the diffusion coefficient with respect to A. From 

the Fokker-Planck equation <A2> satisfies

d<A2>/dT1=2[7j<A2>-^<At>+Dl (2.31)

If)7<0, the linear approximation can be used since <A4> 

decays much more rapidly than <A2>. Thus, <A2> becomes 

<A2> = <A2> 0 exp (-2?/ rj +D Q- exp E-LqWM 

(2. 32) 

where rjr = -r)>0. In the case of rj>0 and d>0, the linear ap­

proximation breaks down for exp(2r/Ti)三 1 since <A4> is pro­

portional to exp(4〃Ti). Therefore, we have to sum 나p all the 

most dominant terms up to infinite order for exp(2r)「)~ 1 

to obtain <A2>. Shimizu19 used a system-size expansion 

method to sum up all the most dominant terms up to infinite 

order. The more efficient method is, however, to obtain the 

probability distribution. Some authors14 20-22 have obtained the 

probability distribution satisfying eq.(2.30) and discussed very 

interesting dynamic phenomena for the laser model, the time­

dependent Ginzburg-Landau model, and the Schldgl models. 

Referring the detailed discussion to the previous papers14 2°-22, 

the probability distribution in the second region of time i등 given 

by

P (A, Ti ;&)=G，⑷[2na

X exp {一〔G (A) - A。exp (77 ri) ]!/2ct(T))}, (2. 33) 

where Ao is the initial value of A, the prime in G denotes the 

differentiation with respect to A, and G and o are given by

A=&exp 3 rj〔1+ (b/77)用 exp (2〃 rj

er (rj = (D/tj ) exp (2 T)rj. (2. 34)

In eq.(2.34) the initial value of o has been neglected. It should 

be mentioned that the probability distribution given in eq.(2.33) 

holds only in the case that A is between the two stable steady 

states. In this case, we may start from since there is 

no difference in physical meaning. Thus, <A2>T] is

J?顽dAA，P(A、T\V 応dAP{& r.)

= 〃〔1-V切；exp(x2)er/c (2.35)

where

*=〔2喝(2. 36) 

and erfc(x) is the complementary error function. For very long 

time, O12>T1 becomes

二자僅 (2.37)

which is the same result obtained from the steady state solu­

tion of the deterministic equation [eq.(2.26)].

Discussion

In this work we have investigated the fluctuations of in­

termediates in the Brusselator in the presence of diffusion. 

The linear case shows that the fluctuations are time­

independent near the critical point. Analysis of the nonlinear 

case has been carried out by the two time scaling method and 

the result in eq.(2.21) shows that the solution contains a higher 

order correction in the initial region of time near the critical 

point. It is interesting to notice that the amplitude of fluctua­

tions which contains the time-dependence depends on T) 

rather than t0 due to eq.(2.18a). This fact stems from the in­

clusion of the nonlinear term in eq.(2.5).

Another interesting point is that eq.(2.26) governing the 

timerdependence of the amplitude of fluctuations is of the 

same form as the Schldgl model investigated earlier by Lee, 

et al.21 The correlation between fluctuating intermediates can 

be obtained from eq.(2.29) and results in eqs.(2.32) and (2.35) 

clearly show that the dominating contribution comes from the 

nonlinear term in eq.(2.26) in the nonlinear analysis.

In the forthcoming paper we shall discuss how the 

Brusselator behaves near the critical point when an external 

disturbance is added.
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Appendix Since and the time-dependence

of (y”,y22)' is contained only in 刀(石)，the LHS of eq.(2.18b) 

vanishes. Then, substitution of eq.(2.17) into the nonlinear 

terms in eq.(2.18b) gives

(ri)2(2ac0i0, + 60；!/a)

X COS 噪 c* (1. — 1) r

=一 A(Ti)Jg(l + cos 2kcx) (1, - 1)r (Al)
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At the critical point the inverse matrix 虬次? becomes 

singular. But the above equation can be solved by recogniz­

ing that 1 = cos Ox and when inverse matrix is applied to the 

RHS, the subscript kc should be replaced by 0 for the first 

term and by 2kc for the second term as in eq.(2.19).
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Diacetylene compound, 1,4-diphenyl-l ,3-butadiyne, was photolyzed with 5-fluorouracil as a model reaction of the phototox­ic conjugated poly-ynes with DNA or RNA and obtained a [2 + 2] photocycloadduct. The structure of the photoadduct was determined by spectral methods and compared with the [2 + 2] photoadducts of 1,4-diphenyl-l, 3-butadiyne with tetramethylethylene and dimethyl fumarate.
Introduction

Certain naturally occurring conjugated poly-ynes 

(polyacetylenes) have been reported to be phototoxic to a varie­

ty of microorganisms, human skin fibroblasts, Syrian hamster 

cells, mosquito larvae and Paramecium.1-6 For example, 

l-phenylhepta-l,3,5-triyne(PHT) which is a conjugated 

poly-yne occurring in high concentration in the leaves of the 

tropical weed Bidens pilosa L. is phototoxic toward various 

organisms containing membranes, including eukaryotic cells, 

fungi, bacteria, and viruses in the presence of long wave UV.7 

PHT, unlike the naturally occurring photoactive psoralens, 

does not form interstrand cross-links with calf thymus DNA8 9 

while furanocoumarins inactivate viruses by cross-linking 

the DNA.9 Instead, PHT exerts its phototoxic action via the 

viral membrane damage which inactivates DNA or RNA to 

replicate.8 However, nothing is known about the 

photochemistry of poly-ynes even though it is essential to 

understand the molecular mechanism of phototoxicity of the 

compounds. This membrane damage may involve the modi­

fication of cellular DNA or RNA.

The conjugated di-ynes are reported to be less toxic than 

the conjugated tri-ynes1 but the cross-addition products were 

isolated and characterized in the photochemical reaction of 

diacetylene compound 1,4-diphenyl-l ,3-butadiyne(DPB) and 

some olefins.10

We now report for the first time the photocycloaddition 

of DPB with 5-fluorouracil (5-FU) as a model photoreaction 

of conjugated poly-ynes with DNA or RNA possibly in the 

membranes of various organisms.


