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A nonlinear analysis is presented for the treatment of fluctuations near the critical point in the presence of (Effusion in the 

Schldgl models. The two time scaling method is used to obtain an evolution equation for the amplitude of fluctuations. It 

is shown that the fluctuations decay to zero in the stable region and they are enhanced to a finite value as time goes to infinity 

in the unstable region.

Introduction

In recent years, much attention has been paid to the in­

stabilities and transition phenomena that may appear in 

chemical systems subject to nonequilibrium constraints. These 

far-from-equilibrium instabilities and nonequilibrium transi­

tions are observed in many fields.1-5 The close analogy be­

tween the so-called "chemical instabilitiesand equilibrium 

phase transitions has been particularly stressed.6-9 Indeed, 

both kinds of transitions are characterized by an enhancement 

of fluctuations, long-range order, and critical slowing down.

In this paper, we focus attention on transitions in non­

equilibrium chemical systems characterized by multiple 

homogeneous steady states. The typical examples we choose 

for our study are two Schldgl models. The relaxations of these 

chemical systems from the unstable steady state in the 

homogeneous situation have been wid이y studied by many 

authors?0-12 They have obtained the approximate probabili­

ty distribution function satisfying the Fokker-Planck equa­

tion. In the presence of diffusion we may also obtain the 

probability distribution.1113 Yet the Effusion can change the 

stability property of the homogeneous steady states. The 

reaction-diffusion systems give rise to solutions with variety 

of characteristics arising via a bifurcation mechanism far from 

thermodynamic equilibrium?415 So we can analyze the 

dynamic behaviors of these chemical systems, stability pro­

perty and fluctuations, instead of obtaining the probability 

distribution.

The purpose of this paper is to discuss the effect of 

nonlinear terms on fluctuations of intermediates in the Schldgl 

models near the critical point caused by Effusion. This kind 

of nonlinear dynamic phenomena can be studied only by ap­

proximate methods The method to be used here is the two 

time scaling method.16-18 In the two time scaling method the 

whole range of time is divided into three regions of time. The 

initial region of time is the range of time where the linear ap­

proximation is valid. The second region is the region in which 

the nonlinear effect becomes important and the system ap­

proaches a steady state. The final region is the region where 

the system stays at the steady state.

In the present paper, we analyze the two Schldgl models 

separately. First we consider the linear case and then the 

nonlinear case is studied using the two time scaling method. 

After that we discuss the resulting evolution equation for the 

amplitude of fluctuations. Finally, the main conclusions and 

some remarks are given.

Theory

A. Schldgfs First Model
The first type of Schldgl model considered here is

A+X = 2X ⑴

B+X 그는 C

The concentration of reacting intermediate X(f,t) satisfies the 

following rate expression:

으广X(M)+F〔X")〕 (2)

where

F〔XG")〕= aXG」)—£XG,z)2+;i (r,t) (3)

Here a and ft are assumed to be positive constants, A is a pum­

ping parameter. This quadratic model is known to exhibit a 

second order phase transition.

The homogeneous steady states of this system are deter­

mined by the solution of 나k equation RXg, 恩) = 0.

aXst - fiXlt + =0 ⑷

&〔a 土V、' + 4夕人京 (5)

사，

When there is no diffusion (i.e. homogeneous state), from the 

linear stability analysis it is well known that the steady state 

is on the stable branch if the first order derivative of 想 with 

respect to 為 is positive and it is on the unstable branch if 

the derivative is negative. At the marginal stability point the 

derivative vanishes.

fn order to consider the fluctuation around a steady stat° 

we expand eq.(2) in terms of x = X - X°. Then we obtain, 

for the case of A =

흐臬브 = (a~2fiX^)x(rf (rf (6)

ot dr

Here we consider only one-dimensional diffusion and r is the 

one-dimensional spatial variable.

(A.l) Linear Case and Stability Analysis
Neglecting the quadratic term in eq. (6), we have a linear
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equation for x.

穹第 （7）

If we assume a solution of the form x = xo ea, cos kr, the expo­

nent a is given by

a= a - 2/8X* — Dk2

= 干 V/+4夕蓦마:2

(8a)

(8b)

The stability of the solution is determined by the sign of 

the exponent a. (Here we assume a noh-periodic solution, so 

a must be real). Thus, the system can be stable or unstable 

depending on the controllable variables and k2. The condi­

tions for the linear stability are

广+“ 人;g 그 0 (a is real) (9)

干Vu「『40薦」<•아2 (a is negative) (10)

a
We notice that at the homogeneous stable branch (X2 > 万司 

the two conditions are satisfied. At the homogeneous unstable 

branch (恐 < 歹财)the system can become stable if k2 has a 

value larger than the critical value kc2 when is fixed. The 

division between the stable and unstable regions in (k2, A?t)- 

space is depicted in Figure 1.

If we let A?r = 0, then the steady state X% = a/p has expo­

nent whose value is a - -a - Dk2 < 0, so this steady state 

is also stable in the presence of diffusion. Yet for the steady 

state 為=0, the exponent a becomes a - Dk2 which can have 

both signs depending on the value of k2. In other words, there 

is a critical value kc2 upon which the stability property of the 

system changes. The critical value is given by

k^a/D (11)

If k2 > 血？, 나］e system is (linearly) stable (a < 0), and if k2 <

V, it is unstable (a > 0).

Using the value of k?, the exponent a can be written as

a=a -Dk2=-D(k2-k^) (12)

The solution in the linear case is

x (r, t) =x0 exp{-D Q宀Jcos kr (13)

The region to be considered in this paper is near the critical 

point. In the critical region where k2 스 kc2, eq. (13) becomes

X (r, COS kr (14)

(A.2) Nonlinear Case
The linear theory predicts stability for k2>klt and instabili­

ty for k2 < kl. For k1 < k?, the fluctuation will grow exponen­

tially in time with a growth rate proportional to b? - k2. 

Clearly, this exponentially growing solution according to the 

linear theory, cannot represent the actual solution for very 

long, for it will soon grow sufficiently large so that the 

nonlinear terms become important. Then a nonlinear analysis 

becomes necessary.

In our nonlinear analysis, we 옪hall apply the two time scal­

ing method. The whole range of time is divided into three 

regions. The initial region of time denoted by t0 is conven­

tionally the range of time where the linear approximation is 

valid. In the present analysis, however, we shall include a 

slight nonlinear effect to obtain more accurate solution. The 

second region, denoted by Tlt is one in which the nonlinear 

effects become important, and the solution continues to evolve 

in time until it approaches the steady state which is the third 

region, reached in the limit as 匸 becomes infinite.

Let us scale the time and the fluctuation x as

캉 , TO=o, 1 (i5)

X = E, £ 七牝 i = l, 2

where £ is a parameter to be defined later. In the initial 

region of time, the eq.(6) for the steady state X? = 0 becomes

a = d 2x
/厂D 靜件 螞) (16)

Each term in the above equation can be scaled, using the scal­

ing scheme of eq.(15), as follows:

宇—g红+e夺 (17)

ol d To o To

-* e -(18)

一 + Q9)

For the first order of we obtain

舞 T。+嗚 / (20)
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which is just the linear equation already discussed. Then, O 2 Ch i

(a+D次 f ("D訐(沔+宀,)

(21)

in the critical region (k 즈 愿), For the second order of c the 

following equation is obtained.

e ax0 (rjcos kr-\~e2 (ri)2(3-cos 2材)
o

쯔 =S+D 으腿
Using the relation

Dk1x0 (rjcos kr+e'Dk1 뽈“ (zn)'cos 2kr 

3a
(29)

= 頒)*2 - gf으 (1 + cos 2kr) 

dr Z

(22)

虹=（宀蛭）+蝇
(30)

x2 represents the correction of the order e2 due to the nonlinear 

effect.

We assume that fluctuations depend on to and through 

the amplitude of fluctuations, x0. That is,

wHere

(n r0, Ti) =x0 (r0, rjcos kr

,r +1 if k*〉蛙

'—〔-1 if 矽＜战

(23)

in the critical region. From eqs. (21) and (23) we find that x0 

is approximately independent of t0 in the critical region. That 

is, x0(To» Ti) 스 x0 (tJ. Therefore, xt is dependent only on Ti 

through x0 (tJ via eq. (21). Since x2 is the second correction 

to x, we may also assume that x2 is independent of t0. Then 

we let dx2/dT0 = 0 in eq. (22), which gives

eq. (29) becomes

O 2

(a 习戸)x

(住+D으7)七 = 胃驾(1 + cos 2kr) (24)

B
f e ax0 (tx ) cos kr-\~ e.2 —x0 (r i)2 (3 - cos 2广) 

o

DkcX0 (rjcos Mr-宀)'D x0 (n) cos kr

+ L 务 ("cos 2 切■+" 次으

(31)

c x0(n),cos 2kr

3。

From eq. (24) we have the particular solution for x2 as '으X。S】）*（l+cos 가”）

十0&)'(3-c°s 2kr)
(25) -£ 7? Xo (ti) cos kr+O (e4)

The resulting solution (corrected solution) in the initial 

region of time is

where

rZ) if
"一l-D if (32)

“斜。W（3-cos 아r）
(26)

Finally,

in the critical region (k 슷 如). The solution is more accurate than 

the linear case in the sense that a slight nonlinear effect is 

included.

Since we are examining the stability of 裕=0 in the 

neighborhood of = kc, it is natural to expand the solution 

about this quantity. Therefore, we define e by the relationship

‘=|虹1키
(27)

€ 2 px0 (z\ ) 허 cos2 kr

e 3 ~~ x0 (ti)3 (cos hr) (3 — cos 2kr) +0 (e 4) 
3a

2 ~XO (rj^l + cos 2kr)

(33)

3 xo(Ti)s (5 cos A:r + cos 3kr) -\~O (e *) 

ba

The parameter e is thus a measure of the nearness of k2 to k^.

Substituting eq. (26) and scaling time t( into eq. (16), we 

obtain, in the second region of time,

From eqs. (28), (31), and (33), taking terms up to the third 

order in £, we have

安 - 广으去 

dt Ort

〔一了-----J cos Kr
a ti

~ ~ (ti) cos kr - g—為(ti )s (5 cos Ar+ cos 3Ar) (34) 

fia

'〔쓰으也D〕cos *r+o(e4) 

de Using the orthogonality condition of cosine functions, the

(28)
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following equation is obtained:

d尤o(Ti) / % 5g / \
在瓦f (n)

B. SchldgKs Second Mod이
The second Schldgl model is given by

A+2X = 3X

B+X H C

(35)

(36)

In this case the rate expression is

F〔X牝£）〕=我【借£）一£乂伉£尸+人伊”） (37)

Again, the homogeneous steady states of this system are deter­

mined by the solution of the equation F(X%, A?,) = 0. The rela­

tionship between X* and 祀 is

= (38)

This cubic model shows two stable steady state branches and 

one unstable branch and exhibits a first order phase transition.

The expansion of the rate equation in terms of x = X-X\ 

results in, for the cases of A =想

如8蛆+D%즈% (39)

a I dr

(B.l) Linear Case and Stability Analysis
Taking only the linear terms in eq. (39), we get

穹=(a号声 (40)

As in the previous analysis, we assume a solution of the form 

x = 为*허 cos kr, then a is given by

a = a - 3 B X：； - Dk* (41)

Now consider the case of 离=0. For the steady states X% 

= + >/a/pt the value of a becomes a = -2a - Dk2 which is 

always negative when a is positive. Therefore, the two steady 

states preserve their stability in the presence of diffusion. Yet 

the homogeneous unstable steady state = 0 has a = a — 

Dk2. So it has the same property as the state 恐=0 in the 

previous model. Therefore there is a critical point = a/D. 

If k2 > 蜡,the steady state = Q becomes stable.

The linear equation for =0 is

쯔」.+D 穿 (42)

This is the same form as in the previous model. So the solu­

tion in the linear case is

x(rtt) =x0 exp{ — D (A2 —cos kr (43)

which becomes, in the critical region,

x(r, t)~x0 cos kr (44)

(B.2) Nonlinear Case
We apply the same scaling scheme as before:

Tm=€2Mt , m=0, 1

(45)

X = z E^i , 1 = 1, 2

First, in 나le initial region of time, the equation of motion for 

the steady state 為 그 0 becomes

宇= ax-" (46)

at ot

Each term can be scaled as before:

穹一窘+_弈 (47)

헤 O To d To

分 2 2 2 2(a+D^J)x f e (a+D — )xI + ei(0+D-^)x2 (48)

-fix3 - O(£3) (49)

The first order terms in e gives the linear equation

粉=(。+■鶴財 (50)

whose solution is

=^o (rj cos kr (51)

Fcr the second order of e

礬으*2 (52)

O To d ?*

Following the argument already discussed, we can set 3x2/9to 
=0. This gives x2 = 0. This means that there is no correc­

tion resulting from nonlinear effect up to the order 己 

Therefore, the solution in the initial region of time is

x (r, rL) = £XO (n) cos kr (53)

Now, in the second region of time, each term in eq. (46) can 

be scaled as before:

dx 2 Qx 
-- f £.-----  
dt d ri

= L〔쓰으^〕cos" (54)

如

(a-hD^-y)x — £ (n) cos kr

dr dr

=€ ax 0 (rj cos kr - eDk2x0 (rj cos kr

=e ax0 (rj cos kr - eDkcX0 (n) cos kr

—x0 (rL) cos kr
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where

一宀)x0 (rj cos kr (55)

R〉岭 

k2<k^ 

cos3 kr

3
、一B for the second (cubic) model

4

(56)

(57)

r P if 
q” if

«o(ri)3

3 A
—Xo (ri)a (3 cos Ar-Fcos 3kr)

4

From eqs. (54), (55), and (57) we obtain

(58)

-~xo (rL)3 (3cos Ar+cos 3kr)
4

The final equation for evolution of x0 (n) is

辭丄-八。（“）呉舂山，），
(59)

And for rj < 0

].(\ _ *o(。)
hm x0 \ Tj) ~------- (■有/*)〔/a… K(0)|°〃W (64)

=士 v万/廿

where rj = -rj = D.

In order to get more information let us consider the average 

of x0(T!)2. To discuss < 知(弓尸 > we consider 知(们)as a stochastic 

variable and use the method which deals with the Fokker-- 

Planck equation for x0(Ti) as in the previous work.18

When rj > 0, from the deterministic type of equation for 

< x0(Ti)2 > we obtain

<^o(Ti)2> = >o exp (- 27； “) + 므〔1 一 exp (~2r)rx )〕(65)

where D is the diffusion coefficient with respect to x0.

If I] < 0, we need to use the probability distribution func­

tion for x0(T!)to get < %0(Ti)2 >. By using the approximate pro­

bability distribution obtained previously,1011,18 we get

<尤*〉与=(初/$)〔1• 一 exp (聲)erfc (V)〕 (66)

C. Evolution of Fluctuations
The evolution equations of the amplitude of fluctuations 

考o(tJ in the two Schldgl models can be written as

答 '지 = - 〃 x0 (rj ~Sx0 (rJ3 4

where 〃 = 土Q for 虹가力 and

6 =

CO 2
了-으一 for the first (quadratic) model

6a

(60)

(61)

where

丫=〔2诳(G/力〕t/2 (67)

with

o (r1)=exp(2^r1) (68)

and erfc(Y) is the complementary error function. For very long 

times, 5고礼 becomes

<Xq>„ = ^/6,

=〔그:。（8）尸
(69)

Notice that d is always positive since &〉0, 0 > 0. Yet the 

coefficient 〃 can be positive or negative. If 〃 > 0, the system 

has a stable steady state corresponding to x0 = 0 and ap­

proaches the stable steady state as time goes to infinity. In 

the case that y\ is negative, ±S/d)% correspond to stable 

steady states and x0 = 0 is an unstable steady state. The 

amplitude of fluctuations approaches the stable steady states 

as Tj goes to infinity.

The above properties can be seen if we look at the deter­

ministic solution of eq. (60). It reads

xo (ri)=x0 (0) exp ( - n 有)

/[l+xo (0)'G/〃)(l-exp(-2〃石))〕'"

For)7 > 0, as Ti -» oo

lim x0 (n) =0

(62)

(63)

Conclusion and Remarks

We have analyzed the nonlinear stability of the two Schldgl 

models in the presence of diffusion. The resulting equations 

(35) and (59) (or eq. (60)) for the amplitude of fluctuations show 

the stability behavior of the system. For k2 > V, x0 = 0 is 

the only stable solution. This means that the fluctuations 

vanish as time goes on, so the steady state = 0 is stable. 

Yet for k2 < V,(Xo = 0 becomes unstable and evolves to the 

finite value as time goes to infinity. In other words, the fluc­

tuation is enhanced and this reflects the fact that the system 

relaxes from unstable steady state to new stable steady 

state(s). The interesting result is that the critical behavior is 

caused by the diffusion effect. Without diffusion there occurs 

no critical point for our Schldgl models. Diffusion can be 

thought to play an important role in the dynamical behavior 

of the systems.

In 为一space, the critical point kc2 is a bifurcation point across 

which new steady states emerge from a steady state. Since 
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k is proportional to the inverse of wavelength, the bifurcation 

toward new stable steady states occurs above the critical 

wavelength. This shows that a *4long range order" is impor­

tant in the formation of an ordered stable spatial pattern.

Several years ago, Matkowsky16 presented a mathematical 

treatment of nonlinear dynamic stability problem. A partial 

differential equation of the same type as that discussed in this 

paper with a nonlinear source term is dealt with in his work. 

His main interest was to investigate the dependence of the 

solution on a certain parameter, which determines the stability 

property of the system, in the neighborhood of a critical (or 

bifurcation) point. So he derived a formal asymptotic repre오en- 

tation for the solution in powers of a small parameter e which 

is related to the nearness of the system from the critical point. 

Using the two time scaling method for nonlinear analysis, a 

recursive system of equations for each power of £ was obtain­

ed. From the orthogonality condition to be satisfied, he was 

able to get the first order nonlinear ordinary differential equa­

tion for the amplitude function. This amplitude function plays 

the same role of an order parametr as x0(Ti) in our analysis.

If we apply the Matkowsky*s method to our mod은Is, the 

following result is obtained:

쓰Q = (70)

dr

for the amplitude function A(t). Here tr is a positive constant 

which has a different value for each model and £ has the value 

+1 in the stable region and -1 in the unstable region. This 

result is equivalent to ours. In principle, the two approaches 

are equivalent. Yet the Matkowsky's method can explain the 

effect of the type of initial perturbations. And it is easy to ex­

amine the dependence of the system's behavior on the form 

of rate expression using this approach. Therefore, it may be 

applied to more general case*

But, since Matkowsky's work is more mathematical, we 

have some difficulties in getting physical meanings from the 

analysis. The procedure of constructing the evolution equa­

tion for the amplitude of fluctuations is more involved using 

his approach. And in his work the stability properties of the 

steady states are not easily found. In particular, if we deal 

with more complicated s辻nations, e.g. reaction-diffusion 

systems with more than one intermediates, our approach 

would have advantages. An example of those systems is in­

vestigated in the previous work.18.

Finally, it is noticed that in this analysis, the difference bet­

ween quadratic and cubic models is not shown up clearly. They 

give the same type of equations for the amplitude of fluctua­

tions in spite of the fact that they show different types of non­

equilibrium transitions. Yet some authors19 argued that for a 

quadratic nonlinearity, sufficiently close to the bifurcation 

point, the system was unable to show critical behavior. The 

similarities and differences of the two Schldgl models need 

more understanding. Types of nonlinearities will be more im­

portant if we deal with a system with more than one in­

termediates.
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