Synthesis of Damascones and Related Flavoring Compound:

\(\beta \)-Damascone

Woo Young Lee*, Jung Mee Park, Ki Hong Nam, Se Young Jang, and Oee Sook Park**

Department of Chemistry, Seoul National University, Seoul 151, Korea

**Department of Chemistry, Chungbuk National University, Chungbuk 310, Korea

(Received June 5, 1986)

Abstract. The synthesis of \(\beta \)-damascene(I), an odoriferous natural product, was investigated from 2,2,6-trimethylcyclohexanone(II); (II) was ethynylated by the action of monoacetylide anion prepared from acetylene and sec-butyllithium at \(-78^\circ C\), to give an ethynylcarbinol(III), which was isomerized to an acetylcyclohexene(IV) by refluxing in aqueous oxalic or formic acid. (IV) was treated with sec-butyllithium, the enolate was reacted with freshly dried acetaldehyde, and the resultant \(\beta \)-hydroxyketone(V) was dehydrated by TsOH to \(\beta \)-damascene, trans-2,6,6-trimethyl-1-crotonyl-1-cyclohexene(I).

1. INTRODUCTION

The damascones and damasconones are natural products with characteristic fragrance and flavouring properties. They are significant constituents of Bulgarian rose oil and raspberry aroma. \(\beta \)-Damascone is a member of this group of compounds, and has also been detected in various brands of tobacco and tea as well as rose oil.

* This investigation was supported by a grant (1985) from the Korea Research Foundation.
Since the recognition of β-damascone as a useful material for the creation of modern fragrances, its chemical synthesis has been received much attention. Several syntheses of β-damascone have been reported in previous communications, starting from β-cyclocitrinal19, β-ionone11,12, β-ionol11,13, prenyl phenyl sulfone14, 2, 2, 6-trimethylcyclohexanone11,14-16.

This paper provides a new synthetic procedure of β-damascone using 2, 2, 6-trimethylcyclohexanone(5) as a starting material, which was synthesized by one of the known methods19-22. The trimethylcyclohexanone(5) was ethynylated with monoacetylide anion which could be produced from acetylene and sec-butyllithium, to give a tertiary ethynylcarbinol(6). The 1-ethynyl-2, 2, 6-trimethylcyclohexanol(6) was converted, by refluxing in oxalic acid, into 1-acetyl-2, 2, 6-trimethyl-1-cyclohexene(7). The acetylcylohexene(7) was treated with sec-butyl lithium to give an enolate ion which was reacted with acetaldehyde to produce an aldo condensation product, β-hydroxyketone(8). Dehydration of the hydroxyketone(8) gave the β-damascone(1) of fragrant odour.

![Diagram](Image)

2. EXPERIMENTAL

All operations involving organometallic reagents were carried out with well-dried vessels and solvents under nitrogen. Tetrahydrofuran was dried by refluxing for hours in the presence of sodium metal and benzophenone, followed by distillation under nitrogen. The boiling point of liquid products were unmeasured. The tlc was taken with DC-Plastikfolien Kieselgel, Art 5735, 60F254(Merck). IR spectra were recorded on Analyst FT IR, Model FX 6160 (Analyt, USA), nmr spectra were taken on a Varian EM 360A spectrometer, and Mass spectra were obtained on a Hewlet Packard (USA) Model 5985B or Shimazu-LKB 9000GC/MS system.

2.1 Ethynylation of 2, 2, 6-Trimethylcyclohexanone(5). In a 250mL three-necked round-bottomed flask fitted with a dropping funnel and a magnetic stirrer, was added under nitrogen 50mL of freshly dried tetrahydrofuran, and the flask was cooled in a dry ice-acetone bath. Dry acetylene gas was bubbled with stirring to the tetrahydrofuran for 10min. To the saturated solution of acetylene, was added dropwise with stirring 25mL of 1.4M sec-butyllithium (45 mmoles) through a syringe, while bubbling acetylene during the addition. A solution of 2.0g (14 mmoles) of 2, 2, 6-trimethylcyclohexanone in 2~3mL of tetrahydrofuran was added dropwise with stirring to the resultant acetylide under nitrogen. After stirring 1.5hr, cooling was removed and 50mL of water was added followed by adding a few drops of dilute hydrochloric acid. Tetrahydrofuran was removed on a rotary evaporator, and the reaction mixture was extracted with diethyl ether, washed with water, dried over anhydrous magnesium sulfate and filtered. Evaporation of the solvent gave a pale yellow liquid product which showed only one spot on tlc. This product, 1-ethynyl-2, 2, 6-trimethylcyclohexanol(6), being pure, could be used in subsequent experiment. The yield 75~83%.

This compound was deemed to have trans-configuration23. When the reaction was carried out with n-butyllithium instead of sec-butyllithium, the yield was reduced and a mixture of cis and trans isomer was produced in a ratio of about 1:7, which could be able to separate on a silica gel column.
Trans form (equatorial C₆-methyl, equatorial OH). IR (neat): 3500 (broad, OH), 3300 (sharp, CH), 2100 cm⁻¹ (weak, C=O). NMR (CDCl₃): δ 0.95 (s, 3H, CH₃), δ 1.03 (s, 3H, CH₂), δ 1.10 (s, 3H, CH₃), 1.30–1.60 (m, 6H, 3CH₂), 1.80 (s, 1H, OH), 2.40 (s, 1H, =CH).

Cis-form (equatorial C₆-methyl, axial OH). IR (neat): 3600 (broad, OH), 3300 (sharp, CH), 2100 cm⁻¹ (weak, C=O). NMR (CDCl₃): δ 1.07 (d, 3H, CH₃), δ 1.08 (s, 6H, 2CH₃), δ 1.70 (s, 1H, OH), δ 1.20–1.60 (m, 6H, 3CH₂), δ 2.30 (s, 1H, =CH).

Mass spectrum: m/e 166 (M⁺), 151, 133, 125, 110, 95, 82, 77, 67, 55, 41.

2.2 Isomerization of 1-Ethyl-2, 2, 6-trimethylcyclohexanol (6). The tertiary ethynylcarbinol (6) was isomerized to an acetylcyclohexene (7) by refluxing in oxalic or formic acid, where hydration to acetylene and dehydration proceeded simultaneously.

A mixture of 0.9g (54 mmoles) of the tertiary the ethynylcarbinol (6) and 15ml of 40–50% oxalic acid was refluxed for 3hr. The reaction mixture was cooled to room temperature, 40ml of cold water was added and neutralized with aqueous sodium carbonate. The mixture was extracted with ether, washed with aqueous sodium chloride, dried over anhydrous magnesium sulfate, and evaporated the solvent under reduced pressure. The crude product was purified on a silica gel column to give a yellow liquid product, 1-acetyl-2, 6, 6-trimethyl-1-cyclohexene (7). The yield was 46~75%. This conversion could also be performed with 85% formic or with sulfuric acid containing mercuric oxide.

IR (neat): 3550 (broad, OH), 1715 cm⁻¹ (C=O). NMR (CDCl₃): δ 3.7 (two s, 2H, OH and tert. H), δ 2.8 (d, 2H, COCH₂), δ 2.0 (t, 2H, = C−CH₂), δ 1.5–1.67 (m, 7H, CH−CH₃, C=−CH₂), δ 1.2 (d, J=6Hz, 3H), δ 1.1 (s, 3H, 2 CH₂). MS: m/e 166(M⁺), 123, 105, 81, 41.

2.3 3-Hydroxy-1-(2, 6, 6-trimethylcyclohexen-1-yl)-1-butanone (8). A β-hydroxyketone (8) was obtained by the action of an enolate of the acetylcyclohexene (7) on acetaldehyde to give an aldol condensation product.

A solution of 500mg (3 mmoles) of the acetylcyclohexene (7) in 5ml of dry tetrahydrofuran was added under nitrogen to a 250ml two-necked round-bottomed flask. The flask was cooled in a dry ice-acetone bath, 3.3ml of sec-butyllithium (1.4 M in cyclohexane) was added by a syringe with stirring, and allowed the reaction mixture to warm to room temperature. To this reaction mixture, one equivalent of acetic acid was added, stirred 10 min, and 30 ml of water was added. After 30 min stirring, the mixture was extracted with ether, washed with aqueous sodium bicarbonate and then saline solution, dried over anhydrous magnesium sulfate, and evaporated the solvent under reduced pressure to give a crude product, which was chromatographed on silica gel column obtaining a pale yellow liquid product of a hydroxyketone (8). This condensation reaction could also be done using LDA instead of sec-butyllithium. The yield 55~67%.

IR (neat): 3550 (broad, OH), 1715 cm⁻¹ (C=O). NMR (CDCl₃): δ 3.7 (two s, 2H, OH and tert. H), δ 2.8 (d, 2H, COCH₂), δ 2.0 (t, 2H, = C−CH₂), δ 1.5–1.67 (m, 7H, CH−CH₃, C=−CH₂), δ 1.2 (d, J=6Hz, 3H), δ 1.1 (s, 3H, 2 CH₂). MS: m/e 210 (M⁺).

2.4 β-Damascone (1). In a 250ml two-necked round-bottomed flask fitted with a Dean-Stark trap, 500mg of the hydroxyketone (8) and a small (catalytic) amount of p-toluenesulfonic acid was dissolved in benzene, and the mixture
was refluxed for a few hours. Benzene was removed at reduced pressure, water was added, extracted with ether, washed with aqueous sodium carbonate and then saline water, and dried over anhydrous magnesium sulfate. Evaporation of solvent gave a almost pure, deep yellow liquid product, \(\beta \)-damascene\(^{(1)} \), which was purified by chromatography. The yield 90~95 \%.

IR\((\text{neat})\) : 1621, 1646 and 1678\((C=C\text{−}C=)\), 974\((CH=CH, \text{trans})\), 730\(cm^{-1}(CH=CH, cis)\). The gie showed that the product was a mixture of cis and trans isomers in a ratio of about 1 : 4. NMR\((CDCl_{3})\) : \(\delta \) 6.70\((d, d, 1H, J=16 Hz, MeCH=)\), \(\delta \) 6.10\((d, q, 1H, J=16 Hz, COCH=)\), 1.90\((d, d, 3H, J=6.5Hz, CH_{3}CH=)\), 1.50\((s, 3H, CH_{2}C=C)\), \(\delta \) 1.05\((s, 6H, CH_{3}CH=H_{2})\). MS : \(m/e \) 192\(M^{+}\), 177, 123, 107, 91, 81, 69, 41.

3. RESULTS AND DISCUSSION

A new synthetic procedure of \(\beta \)-damascene starting from 2,2,6-trimethylcyclohexanone was reported in this paper. In this investigation, some progress have been made in organic reactions frequently applicable in organic synthesis. The one is the ethynylation of carbonyl compound, the other is the Rupe rearrangement of acetylenic tertiary alcohols.

In previous communications, the addition of acetylene to ketone was carried out usually with alkali–metal acetylide\(^{24,25} \) in liquid ammonia or with lithium acetylide prepared from acetylene and n-butyllithium\(^{26} \). The authors could prepare the monoacetylide anion by the reaction of sec-butyllithium with acetylene in THF at \(-78^\circ C\) with which 2,2,6-trimethylcyclohexanone could be ethynylated in good yield to give an ethynylcarbinol. By this technique, trans product \((\text{equatorial } C_{2}C=CH_{3}, \text{equatorial } OH)\) of 1-ethynyl-2,2,6-trimethylcyclohexanol\(^{(6)} \) was almost exclusively formed. When the n-butyllithium was used in place of sec-butyllithium however, the product was a mixture of cis and trans isomers in a ratio of 1 : 7.

In addition the authors developed a new method in the Rupe rearrangement. The conversion of acetylene-to-ketone has usually been carried out in sulfuric acid containing mercuric salt\(^{27,28} \) as catalyst or in formic acid\(^{29,30} \). However, the Rupe rearrangement\(^{31-34} \) of the ethynylcarbinol\(^{(6)} \) to the corresponding \(\alpha, \beta \)-unsaturated ketone\(^{(7)} \) could also be accomplished by refluxing in aqueous oxalic acid or \(\rho \)-toluenesulfonic acid in pretty good yield.

In the condensation of 1-acetyl-2,5,6-trimethyl-1-cyclohexene\(^{(7)} \), Olah\(^{36} \) et. al. treated the acetylcyclohexene\(^{(7)} \) with N-methylamino-nomagnesium bromide to obtain an enolate. The authors could obtain the lithium enolate by simply treating the \(\alpha, \beta \)-unsaturated ketone\(^{(7)} \) with sec-butyllithium at \(-78^\circ C\), which was then condensed with well-dried acetaldehyde to give a \(\beta \)-hydroxyketone\(^{(8)} \).

The target compound \(\beta \)-damascene, trans-6,6-trimethyl-1-crotonyl-1-cyclohexene\(^{(1)} \), was obtained as a yellow liquid product, the structure of which could be determined by spectroscopic analysis\(^{37,39} \).

REFERENCES

2. (a) E. Demole and D. Berthet, \(\text{ibid.}\), 54, 681 (1971); (b) \(\text{ibid.}\), 55, 1866(1972).
6. W. Renold, R. Naf-Muller, U. Keller, B. Will-