HIGHER LEVEL SIGNATURES ON VALUATION RINGS

JONG IN LIM

Introduction

In [1] E. Becker develops a theory of what he calls orderings of higher level over fields. These generalize orderings of a field in such a way that one can generalize many of the usual results in formally real fields. In [8], Kleinstein and Rosenberg show that there is a natural extension of the usual Witt ring of equivalence classes of non-degenerate bilinear forms over a field to the Witt ring of higher level.

In [5], T. Craven defines the Witt ring of higher level over a semilocal ring and extends many of the results by Kleinstein and Rosenberg. In this paper we apply the results by T. Craven to valuation rings \(A \). Thus we can obtain a generalization of the result by Knebusch on the extension of a signature of \(A \) to a signature of the quotient field of \(A \). As a Corollary we obtain a result on sum of \(2^n \)-powers problem. We also prove that the Dress' theorem [6] can be generalized to higher level case if \(A \) is a local ring with usual conditions. Finally we give two examples convincing us the necessity of the condition \(A \) being a valuation ring in our Corollary.

All of the notations and terminologies follow those of T. Craven.

Higher level signature on valuation rings

Let \(A \) be a connected semilocal ring with no residue class field having 2 elements. We denote the group of units of \(A \) by \(A^* \), write \(G_n(A) = A^*/A^{*2^n} \) for the group of units modulo \(2^n \)-powers, and \(\langle a \rangle_n \) for \(aA^{*2^n} \) where \(a \in A^* \).

DEFINITION 1. The Witt ring of level \(n \) of \(A \), denoted \(W_n(A) \), is the integral groupring \(\mathbb{Z}[G_n(A)] \) modulo the ideal \(J_n(A) \) generated by \(\langle 1 \rangle_n + \langle -1 \rangle_n \) and all elements of the form

Received October 5, 1985.
whenever \(x \) and \(\lambda_1 + \lambda_2 \cdot x \) are both in \(A^* \).

Let \(C_n \) denote the group of \(2^n \)-th roots of unity in the complex numbers and \(U_n \) denote the ring of integers of the cyclotomic field \(\mathbb{Q}(C_n) \).

If \(\sigma : A^* \longrightarrow C_n \) is a homomorphism which extends to \(\sigma : W_n(A) \longrightarrow U_n \); that is, when \(\sigma \) is extended to a homomorphism \(\mathbb{Z}[G_n(A)] \longrightarrow U_n \), its kernel contains \(J_n(A) \), we call \(\sigma \) a signature of level \(n \).

Let \(P = P(\sigma) = \ker(\sigma : A^* \longrightarrow C_n) \), so that \(A^*/P \cong C_m \) for some \(m \leq n \). In this case we shall say \(\sigma \) is a signature of exact level \(m \). In general, we shall speak of signatures of higher level without specifying \(n \). When \(A \) is a field, these definitions coincide with those of [1] and in this case \(P(\sigma) \cup \{0\} \) is an ordering of level \(n \).

DEFINITION 2. Let \(\sigma \) be a signature of exact level \(n \). Define \(Q(\sigma) = \{ \sum \lambda_i a_i | \lambda_i \in A, \sum \lambda_i A = A, a_i \in P(\sigma) \} \).

Note that \(Q(\sigma) = P(\sigma) \) if \(A \) is a field. Now let \(\varphi : A \longrightarrow B \) be a homomorphism between two semilocal rings which satisfy our usual conditions.

DEFINITION 3. Let \(\sigma, \tau \) be signatures of exact level \(n \) of \(A \) and \(B \) respectively. Let \(\varphi_* : W_n(A) \longrightarrow W_n(B) \) be the homomorphism induced by \(\varphi \). We say \(\tau \) is a faithful extension of \(\sigma \) if the homomorphisms

\[
W_n(A) \xrightarrow{\varphi_*} W_n(B) \xrightarrow{\tau} U_n \quad \text{and} \quad W_n(A) \xrightarrow{\sigma} U_n
\]

have the same kernel.

In [5], T. Craven defines \(S_n(A, B) = \{ \sum \lambda_i a_i | \lambda_i \in B, \sum \lambda_i B = B, a_i \in P(\sigma) \} \) for \(\sigma \) and \(\varphi \) as above. Then he shows the signature of exact level \(n \) can be extended faithfully to a signature of \(B \) if and only if \(0 \in S_n(A, B) \).

LEMMA 4. Let \(A \) be a local ring with maximal ideal \(\mathfrak{m} \) such that \(|A/\mathfrak{m}| = 2 \). Then every element of \(Q(\sigma) \) either lies in \(P(\sigma) \) or is a sum of two elements of \(P(\sigma) \) [5].
Now let A be a valuation ring with quotient field K, maximal ideal \mathfrak{m}. Assume $|A/\mathfrak{m}|=2$ and $2\in A^*$. In [11], M. Knebusch proved any signature of level 1 of A can be extended to a signature of level 1 of K. We have the following complete generalization in our higher level case.

Theorem 5. Let A be as above. Then each signature of higher level of A can be extended faithfully to a signature of higher level of K.

Proof. Let σ be a signature of exact level n of A. By the remark above Lemma 4, it will suffice to show $0 \not\in S_n(A, K)$. Suppose $\lambda_1 2^n a_1 + \cdots + \lambda_k 2^n a_k = 0$ with $\lambda_i \in A$, $a_i \in P(\sigma)$ for $1 \leq i \leq k$. If $\lambda_i \in A^*$ for some $1 \leq i \leq k$, then $\lambda_1 2^n a_1 + \cdots + \lambda_k 2^n a_k \in Q(\sigma)$. Since A is a local ring, we have $\lambda_1 2^n a_1 + \cdots + \lambda_k 2^n a_k$ is a sum of two elements of $P(\sigma)$ by Lemma 4. Now we have $\lambda_1 2^n a_1 + \cdots + \lambda_k 2^n a_k = a + b = 0$ for some $a, b \in P(\sigma)$, then $a = -b$, and hence $1 = \sigma(a) = \sigma(-b) = -1$, a contradiction. Therefore we may assume $\lambda_i \in A^*$ for $1 \leq i \leq k$. We denote the (additive) valuation of A by ν. If $\nu(\lambda_1) = \min\{\nu(\lambda_i) | 1 \leq i \leq k\}$, then $\nu(\frac{\lambda_i}{\lambda_1}) = \nu(\lambda_i) - \nu(\lambda_1) \geq 0$, i.e. $\lambda_i \in A$ for $1 \leq i \leq k$. Our equation reduces to $1 \cdot a_1 + \lambda_2 2^n a_2 + \cdots + \lambda_k 2^n a_k = 0$, $\lambda_i \in A$, $a_i \in P(\sigma)$ for $2 \leq i \leq k$. Since $1 \in A^*$, we have a contradiction. Thus $0 \not\in S_n(A, K)$, and our signature can be extended faithfully to K.

Remark. If $1 + \mathfrak{m} \subseteq P(\sigma)$, we say σ is compatible with A. If this is the case, we have the following simple proof. Denote the residue field A/\mathfrak{m} by k. Then the character $\bar{\sigma}$ defined by $\bar{\sigma}(x) = \sigma(x)$ is a well-defined signature of exact level n of k. Since $\bar{\sigma}$ can be lifted faithfully to a signature of $K[7]$, we have proved our theorem.

Now let $\Sigma(A)$ denote the set of all elements $\sum \lambda_i 2^n$ such that $\sum \lambda_i A = A$ together with elements x such that $xy = z$ where y and z are such sums of 2^n-powers. If A is a field then $\Sigma(A) = \Sigma A^{2^n}$. For A semilocal and $n=1$, $\Sigma(A) = \Sigma A^2$ by the representation criterion for quadratic forms [10].

Corollary 6. Let A and K be as in Theorem 5. Then if a unit element a of A belongs to ΣK^{2^n}, a is an element of $\Sigma(A)$.

In [3], Kneser, J-L Colliot-Thélène proved that a is already in ΣA^2.
if $a \in A^* \cap \sum F^2$. Since $\Sigma(A) = \sum A^2$ for $n=1$, Corollary 6 is a generalization of this in higher level case.

Proof. Since $a \in \sum K^{2^n}, a \in \cap \{\text{orderings of level } n \text{ of } K\}$ [2]. Theorem 5 says any signature of higher level of A can be extended faithfully to K, so that $a \in \cap P(\sigma)$ where σ ranges over all signatures of level n of A. By Theorem 3.7 of [5], $a \in \Sigma(A)$.

If σ is a usual signature of level 1 of a commutative ring A with $2 \in A^*$, Dress' Theorem [6] guarantees the existence of some prime ideal p of A such that σ can be extended to A_p. We can generalize this theorem to higher level signature case for local ring A.

Theorem 7. Let A be a local domain with $|A/\mathfrak{m}| \neq 2^k$ and $2 \in A^*$. If σ is a signature of higher level of A, there exists a prime ideal p of A such that σ can be extended faithfully to a signature of higher level of A_p.

Proof. Since A is a local ring, there exists a prime ideal p of A such that σ can be extended faithfully to the quotient field $A(p)$ of the integral domain A/p [5]. Let τ denote the extension of σ. Since $A(p) = A_p/\mathfrak{m}A_p$, we have the following diagram.

$$
\begin{array}{ccc}
W_n(A_p) & \xrightarrow{\eta} & W_n(A_p/\mathfrak{m}A_p) \\
& & \xrightarrow{\tau} U_n \\
& & \downarrow \sigma \\
W_n(A) & &
\end{array}
$$

where η is the natural homomorphism. Since the left triangle commutes, it is clear $\tau \eta$ is an extension of σ on A_p.

Now we give two examples which show the necessity of our condition on A in Corollary 6.

Example 8. Let $A_0 = R[x, y, z]/(x^2 + y^2 + z^2)$, $p = (x, y, z)$ and $A = (A_0)_p$. Then A is a local domain of Krull dimension 2. The element $-1 \in A^*$ is a sum of two squares in K, but -1 is not a sum of squares in $A[3]$.

Example 9. Let k be a real-closed field, and S_0 be the set of irred-
ucible polynomials \(s \in k[x, y] \) such that \(s \) generate a real prime ideal. Let \(S \) be the multiplicative set generated by \(S_0 \), and \(A = S^{-1}(k[x, y]) \). Then \(A \) is a PID. If \(f(x, y) = x^3 + (xy - x^2 - 1)^2 \) \(f(x, y) \) is a positive semidefinite polynomal with the property that \(f^{2r+1} \notin \sum A^2 \) for any \(r \). Now we have \(f \) is a sum of four squares in \(k(x, y) \). If \(A' = A[f^{-1}] \), then \(A' \) is a PID. The unit element \(f \notin \sum A'^{r^2} \) [4].

References

12. T. Lam, Orderings, Valuations and Quadratic Forms, CBMS No. 52, AMS. 1983.

Korea University
Seoul 132, Korea