COMPACT TOTALLY REAL SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE VECTOR IN A COMPLEX SPACE FORM

U-HANG KI AND HISAO NAKAGAWA

0. Introduction

A submanifold M of a Kaehlerian manifold \bar{M} is said to be totally real if each tangent space to M is mapped to the normal space by the complex structure of \bar{M}. The concept was first introduced by Chen and Ogiue [2], who studied their fundamental properties. Many subjects for totally real submanifolds were investigated from various different points of view, as one of which Chen, Houh and Lue [1] and Yachida [8, 9] obtained investigating results of m-dimensional totally real submanifolds with parallel mean curvature vector in $2m$-dimensional complex space forms. Furthermore, Urbano [7] and Ohnita [5] recently determined also manifold structures of such a submanifold of positive curvature or of non-negative curvature, respectively.

The purpose of this paper is to investigate compact totally real submanifolds with parallel mean curvature vector of a complex space form.

Manifolds, submanifolds, geometric objects and mappings discussed in this paper are assumed to be differentiable and of C^∞.

1. Totally real submanifolds of a Kaehlerian manifold

Let (\bar{M}, \bar{g}) be a Kaehlerian manifold of real dimension $2m$ equipped with an almost complex structure J and a Hermitian metric \bar{g}. Let \bar{M} be covered by a system of coordinate neighborhoods $\{ \bar{U}, y^A \}$, where here and in the sequel the following convention on the range of indices are used, unless otherwise stated:

$A, B, C, \ldots = 1, \ldots, n, n+1, \ldots, 2m,$

$h, i, j, \ldots = 1, \ldots, n,$

$u, v, w, \ldots = n+1, \ldots, 2m.$
The summation convention will be used with respect to those system of indices. We then have

\[(1.1) \quad J_A^B J_B^C = -\delta_A^C, \quad J_B^C J_A^D \tilde{g}_{CD} = \tilde{g}_{BA},\]

\(\delta_A^C\) being the Kronecker delta, \(J_B^A\), \(\tilde{g}_{BA}\) the components of \(J\) and \(\tilde{g}\), respectively. Denoting by \(\nabla_B\) the operator of covariant differentiation with respect to \(\tilde{g}_{AB}\), we get

\[(1.2) \quad \nabla_B J_C^A = 0.\]

Let \(M\) be an \(n\)-dimensional Riemannian manifold covered by a system of coordinate neighborhoods \(\{U; x^h\}\) and immersed isometrically in \(\overline{M}\) by the immersion \(\phi : M \longrightarrow \overline{M}\). When the argument is local, \(M\) need not be distinguished from \(\phi(M)\). We represent the immersion \(\phi\) locally by \(y^A = y^A(x^h)\) and put \(B_j^A = \partial_j y^A\), \((\partial_j = \partial / \partial x^i)\), then \(B_j = (B_j^A)\) are \(n\)-linearly independent local tangent vectors of \(M\). We choose \(2m-n\) mutually orthogonal unit normals \(C_z = (C_z^A)\) to \(M\). Then the induced Riemannian metric \(g_{ji}\) on \(M\) is given by

\[(1.3) \quad g_{ji} = \tilde{g}_{BC} B_j^B B_i^C.\]

Therefore, by denoting by \(\nabla_j\) the operator of van der Waerden –Bortolotti covariant differentiation with respect to \(g_{ji}\), the equations of Gauss and Weingarten for \(M\) are respectively obtained:

\[(1.4) \quad \nabla_j B_i^A = h_{ji}^x C_x^A, \quad \nabla_j C_x^A = -h_{ji}^x B_i^A,\]

where \(h_{ji}^x\) are the second fundamental forms in the direction of \(C_x\) and

\[(1.5) \quad h_{ji}^x = h_{ji}^x g_{ih} = h_{ji}^x g_{ih} g_{yx}, \quad g_{yx} = \tilde{g}_{BA} C_y^B C_x^A\]

being the metric tensor of the normal bundle and \((g^{ij}) = (g_{ji})^{-1}\).

An \(n\)-dimensional Riemannian manifold \(M\) immersed isometrically in \(\overline{M}\) is called a totally real submanifold of \(\overline{M}\) if \(J M_p \subset M_p^\perp\) for each point \(p\) of \(M\), where \(M_p\) denotes the tangent space of \(M\) at \(p\) and \(M_p^\perp\) the normal space to \(M\) at \(p\). In this case, \(JX\) is a normal vector to \(M\), provided that \(X\) is a tangent vector on \(M\). Thus it follows that the dimensions satisfy \(m \geq n\). Let \(N(M_p)\) be an orthogonal complement of \(J M_p\) in \(M_p^\perp\). Then the decomposition is obtained: \(M_p^\perp = J M_p \oplus N(M_p)\). Hence, it follows that the space \(N(M_p)\) is invariant under the action of \(J\). Accordingly we can put in each coordinate neighborhood of \(M\),

\[(1.6) \quad J_B^A B_j^B = J_j^x C_x^A,\]

\[(1.7) \quad J_B^A C_x^B = -J_x^i B_i^A + f_x^y C_y^A,\]
where we put \(J_{x} = \bar{g}(J_{B_{j}}, C_{x}) \), \(J_{xj} = -\bar{g}(J_{C_{z}}, B_{j}) \) and \(f_{xy} = \bar{g}(J_{C_{x}}, C_{y}). \) From these definitions we see that

\[
J_{x} + f_{yx} = 0, \quad J_{xj} = J_{xj}.
\]

By taking account of (1.1) and (1.3), it follows from (1.6) and (1.7) that

\[
\begin{align*}
J_{x}^{x} & = \delta_{x}^{y}, \quad J_{x}^{x} f_{x}^{y} = 0, \\
J_{x}^{x} f_{x}^{y} & = -\delta_{x}^{y} + J_{x}^{i} J_{j}^{y},
\end{align*}
\]

where \(J_{x}^{x} = J_{x}^{x}, f_{x}^{y} = f_{xx}^{x}, \) and \(g^{xx} \) is the contravariant component of \(g_{yx}. \) These show that \(f^{3} + f = 0. \) \(f \) being of constant rank, it defines the so-called \(f \)-structure in the normal bundle [10].

If we apply the operator \(\nabla_{j} \) of the covariant differentiation to (1.6) and (1.7) and make use of (1.1), (1.2), (1.4) and these equations, we get respectively

\[
\begin{align*}
h_{ii}^{x} J_{x}^{x} & = h_{j}^{x} J_{x}^{x}, \\
\nabla_{j} J_{x}^{x} & = h_{j}^{x} f_{x}^{y}, \\
\nabla_{j} f_{x}^{y} & = h_{jy}^{x} J_{i}^{y} - h_{j}^{x} J_{i}^{y}.
\end{align*}
\]

In the sequel, we assume that the ambient Kaehlerian Manifold \(\bar{M} \) is of constant holomorphic sectional curvature \(4c \) and of real dimension \(2m, \) which is called a complex space form and denoted by \(\bar{M}^{2m}(c). \) Then the curvature tensor \(\bar{R} \) of \(\bar{M}^{2m}(c) \) is given by

\[
\bar{R}_{DCA} = c(\bar{g}_{DA} \bar{g}_{CB} - \bar{g}_{CA} \bar{g}_{DB} + J_{DA} J_{CB} - J_{CA} J_{DB} - 2J_{DA} J_{DB}).
\]

Since the submanifold \(M \) is totally real, it follows from equations (1.6) \(\sim (1.9) \) that equations of Gauss, Codazzi and Ricci for \(M \) are respectively obtained:

\[
\begin{align*}
R_{kxh} & = c(g_{kk} g_{xi} - g_{jk} g_{hj}) + h_{hh}^{x} h_{jx} - h_{jx}^{x} h_{ki}, \\
\nabla_{h} h_{jx}^{x} - \nabla_{j} h_{kx}^{x} & = 0, \\
R_{jy} & = c(J_{jx} h_{iy} - J_{ix} h_{jy}) + h_{jr}^{x} h_{r}^{y} - h_{ir}^{x} h_{jy},
\end{align*}
\]

where \(R_{kxh} \) and \(R_{jy} \) are the Riemannian curvature tensor of \(M \) and that with respect to the connection induced in the normal bundle of \(M, \) respectively. We see from (1.13) that the Ricci tensor \(R_{ji} \) of \(M \) can be expressed as follows:

\[
R_{ji} = c(n - 1) g_{ji} + h_{x}^{x} h_{jx} - h_{jx}^{x} h_{r}^{r} - h_{r}^{x} h_{r}^{r}, \quad (h_{x} = g_{ji} h_{jx}).
\]

2. Parallel mean curvature vector

Let \(M \) be an \(n \)-dimensional totally real submanifold in a complex
space form $\overline{M}^{2n}(c)$ of constant holomorphic curvature $4c$. A normal vector field $\xi=(\xi^z)$ is called a parallel section in the normal bundle if it satisfies $\nabla_j\xi^z=0$, and furthermore a tensor field F on M is said to be parallel in the normal bundle if ∇_jF vanishes identically. In this section, the f-structure in the normal bundle is assumed to be parallel. In this case, the equation (1.12) is reduced to

$$h_{jz}F^z=h_{jz}J^z_j.$$

Multiplying $h_{jz}J^z_j$ to (1.10) and summing up for j, i and h and making use of (2.1), we find

$$h_{jz}J^z_j=h_{jz}J^z_j,$$
which together with (1.9) gives

$$h_{jz}(\delta_y+f_zf_z^x)=h_{jz}h_{jz}.$$
Thus it follows that

$$h_{jz}f_z^x=0,$$

for any index x, where we have used (1.11).

Remark. We notice from (1.9) that f_z^x vanishes identically if $m=n$. Thus, an n-dimensional totally real submanifold of a real $2n$-dimensional Kaehlerian manifold has always a trivial f-structure in the normal bundle.

Applying J^z_j to (1.10) and summing up for h, we obtain $h_{jz}=h_{jz}J^z_jJ^z_jJ^z_iJ^z_i$ with the aid of (1.9) and (2.2), from which we get, taking the skew-symmetric part of this with respect to indices j and i,

$$(h_{jz}J^z_j)J^z_i=(h_{jz}J^z_j)J^z_i=0.$$
Therefore we see, by a direct consequence of (1.9) and (2.2), that

$$h_{jz}J^z_j=P_{yz}^zJ^z_j,$$
where P_{yz}^z is defined by $P_{yz}^z=h_{jz}J^z_jJ^z_iJ^z_i$ and hence it satisfies

$$P_{yz}^zf_z^w=0.$$

Denoting $P_{yz}=g_{zw}P_{yz}^w$, we see that P_{xyz} is symmetric with respect to all indices, because of (2.1). It follows from (2.3) that

$$h_{jz}P_{xyz}^w=J^z_jJ^z_iP_{xyz}^w,$$
which together with (1.9) and (2.3) gives $P_{xyz}P_{xyz}=h_{jz}h_{jz}$ and

$$h^z=P_z,$$
where $P_z=P_{yz}$.

From now on we denote the index $n+1$ by *. When $x=n+1$ in
Compact totally real submanifolds with parallel mean curvature vector in a complex space form

(2.4), we have

\[h_{ji}^* = P_{ju}^* J_j^* J_i^*. \]

From this equation and (2.4) it is easily seen that

\[h_{jr}^* h_{i}^* = P_{mu}^* P_{yu}^* J_j^* J_i^*. \]

Let \(\mathcal{J} \) be a mean curvature vector field of the submanifold. Namely, it is defined by

\[\mathcal{J} = \frac{g_{ij} h_{ji}^* C_x}{n} = h^* C_x/n, \]

which is independent of the choice of the local field of orthonormal frames \(\{ C_x \} \). Since the fact that the mean curvature vector is parallel in the normal bundle is assumed, we may choose a local field \(\{ e_x \} \) in such a way that \(\mathcal{J} = a e_{n+1} \), where \(a = ||\mathcal{J}|| \) is constant. Because of the choice of the local field, the parallelism of \(\mathcal{J} \) yields

\[h^* = na. \]

\(\mathcal{J} \) being a normal vector field on \(M \), the curvature tensor \(R_{jiyx} \) of the connection in the normal bundle shows that \(R_{jiyx} = 0 \) for any index \(x \). Thus the Ricci equation (1.15) gives

\[h_{jr}^* h_{i}^* - h_{ir}^* h_{j}^* = c (J_j^* J_i^* - J_i^* J_j^*). \]

By the way, we notice from the first equation of (2.2) that

\[f_{i}^* = 0, \]

because of the fact that \(\mathcal{J} \) is non trivial. For a normal vector field \(\xi \), let \(A_\xi \) be a shape operator of the tangent space \(M_p \) at \(p \) in the direction of \(\xi \), which is defined by \(g(A_\xi X, Y) = \bar{g}(\sigma(X, Y), \xi) \) for any tangent vectors \(X \) and \(Y \) of \(M_p \), where \(\sigma \) denotes the second fundamental form on the submanifold. In particular, the shape operator in the direction of \(C_{n+1} \) is denoted by \(A^* \). The following property is then obtained.

Lemma 2.1. Let \(M \) be a totally real submanifold with parallel \(f \)-structure in the normal bundle in a complex space form \(\overline{M}^{2m}(c) \). If the mean curvature vector is non trivial and parallel, and if \(A^* \) has no simple roots, then \(c = 0 \).

Proof. Since the shape operator \(A^* = (h_{ji}^*) \) is diagonalizable, a local field \(\{ e_i \} \) of orthonormal frames in \(M \) can be chosen in such a way that \(h_{ji}^* = \lambda_j \delta_{ji} \). Namely, \(\lambda_1, ..., \lambda_n \) are eigenvalues of \(A^* \). The equation (2.9) is then reduced to
We put \([i] = \{j : \lambda_i = \lambda_j\}\). For any integer \(i\) the assumption implies that there is an integer \(j\) in \([i]\) different from \(i\), and hence \(\lambda_i = \lambda_j\). It yields \(cJ_i^* = 0\), because of (1.9), and hence \(c = 0\) by means of (2.10). This concludes the proof.

Remark. Let \(M\) be an \(n\)-dimensional totally real submanifold in \(\overline{M}^{2n}(c)\) \((c \neq 0)\). It is shown that if the nontrivial mean curvature vector is parallel in the normal bundle, then the shape operator \(A^*\) has simple roots.

Now, the equation (2.9) together with (2.7) yields

\[
(P_{zu} u^* - P_{yu} z^*)J_j^* J_i^* = c(J_j^* J_i^* - J_i^* J_j^*)
\]

Hence it follows that

\[
(2.11) \quad P_{zu} u^* - P_{yu} z^* = c(\partial_{zu} J_i^* J_j^* - J_i^* J_j^* \partial_{yz})
\]

by means of (1.9), (2.3) and (2.10). Contracting \(x\) and \(y\) in (2.11) and making use of (1.9), (2.5) and (2.8), we find

\[
(2.12) \quad P_{zu} P_{xu} u^* - h^* P_{zu} = c(n-1) \partial_{zu},
\]

and hence

\[
(2.13) \quad P_{xz} u^* = h^* P_{zu} + c(n-1).
\]

By multiplying \(h^*\) to (2.11) and summing up for \(z\), it is easily seen that

\[
h^* P_{zu} u^* - h^* P_{yu} z^* = c(h^* J_i^* J_j^* - h^* \partial_{yz})
\]

by means of (2.3), (2.5), (2.8) and (2.10). From the fact that \(P_{xyz}\) is symmetric for all indices it follows that

\[
P_{uz} u^* P_{yz} u^* = P_{yz} u^* P_{uz} u^* + c(h^* - P_{zu} u^*)
\]

because \(f\) is non trivial, where we use (2.5) and (2.8).

Substituting (2.12) into the last equation and making use of (2.3), we obtain

\[
(2.14) \quad P_{uz} u^* P_{yz} u^* = h^* P_{zu} u^* + c(n-2) P_{zu} u^* + h^* u^*.
\]

Lemma 2.2. Let \(M\) be a totally real submanifold with parallel \(f\)-structure in the normal bundle in \(\overline{M}^{2n}(c)\). If the non trivial mean curvature vector is parallel, then

\[
(2.15) \quad \Delta(h_{ij}^* h_{ji}^*) = 2||\nabla h_{ij}^*||^2,
\]

where \(\Delta\) is the operator of Laplacian.
Compact totally real submanifolds with parallel mean curvature vector in a complex space form

Proof. The mean curvature vector being parallel in the normal bundle, the Laplacian of \(h_{ji}^* \) is given, using the Ricci formula for \(h_{ji}^* \), by

\[
\Delta h_{ji}^* = R_{ji} h_{ji}^* - R_{kji} h_{kk}^*.
\]

On the other hand, it follows from (1.16) and (2.8) that

\[
R_{ji} = c(n-1)g_{ji} + h^* h_{ji}^* - h_{ji} h_{ii}^*.
\]

If we substitute this and (1.13) into (2.16), we obtain

\[
\Delta h_{ji}^* = c n h_{ji}^* - c h^* g_{ji} + h^* h_{ij}^* h_{ii}^* - h_{kk}^* h_{kk}^* h_{jiy}
\]

\[
+ h^* h_{kk}^* h_{jhy} - h_{ij} h_{jhy} h_{ii}^*.
\]

By means of (2.10), it turns out to be

\[
\Delta h_{ji}^* = c n h_{ji}^* - c h^* g_{ji} + h^* h_{ij}^* h_{ii}^* - h_{kk}^* h_{kk}^* h_{jiy}
\]

\[
- c h^* (J_{ji}^* J_{ij}^* - J_{ji} J_{ij}^*).
\]

Thus it follows from (2.5), (2.6) and (2.8) that

\[
\Delta h_{ji}^* = c(n-1)h_{ji}^* - c h_{ji}^* (g_{ji} - J_{ji} J_{ij}^*)
\]

\[
+ h^* P_{xy}^* P_{xy}^* J_{ij}^* J_{ij}^* - P_{xy}^* P_{xy}^* h_{jiy}.
\]

Consequently it follows from the last equation that

\[
h_{ii}^* \Delta h_{ij}^* = c(n-1)P_{xy}^* P_{xy}^* - c h_{ij}^* + c h^* P_{xy}^*
\]

\[
+ h^* P_{xy}^* P_{xy}^* (P_{xy}^* P_{xy}^* - (P_{xy}^* P_{xy}^*) (P_{xy}^* P_{xy}^*))
\]

where we have used (1.9), (2.3), (2.6), (2.7) and (2.8). Substituting (2.12)~(2.14) into the above equation, we obtain \(h_{ij}^* \Delta h_{ij}^* = 0 \). This completes the proof.

Corollary 2.3. Let \(M \) be an \(m \)-dimensional totally real submanifold in \(\overline{M}^{2m}(c) \). If the nontrivial mean curvature is parallel, then (2.15) is valid.

3. Characterization of submanifolds

This section is devoted to investigating the manifold structure of compact totally real submanifolds in a complex space form \(\overline{M}^{2m}(c) \). Let \(M \) be an \(n \)-dimensional compact totally real submanifold of \(\overline{M}^{2m}(c) \) such that the \(f \)-structure in the normal bundle is parallel. If the non trivial mean curvature vector \(\mathcal{J} \) on \(M \) is parallel, then Lemma 2.2 says the second fundamental form \(h_{ji}^* \) in the direction of \(\mathcal{J} \) is parallel, that is, \(\nabla_{\mathcal{J}} h_{ji}^* = 0 \).
on M. When a function h_m for any integer $m \geq 1$ is given by
$$h_m = h_{i_1}^{i_2} h_{i_3}^{i_4} \cdots h_{i_m}^{i_1},$$
it is easily seen that h_m is constant on M for any integer m, because h_{ij}^{*} is parallel. This implies that each eigenvalue λ_i of the shape operator A^* is constant on M. By $\mu_1, \cdots, \mu_\alpha$ mutually distinct eigenvalues of A^* are denoted. Let n_1, \ldots, n_α be their multiplicities. Since distinct eigenvalues μ_α ($a=1, \ldots, \alpha$) is constant, the smooth distribution T_α which consists of all eigenspaces associated with the eigenvalue can be defined, and they are then mutually orthogonal. Furthermore, A^* being parallel, these distributions T_α are parallel and hence completely integrable. Thus, by means of the de Rham decomposition theorem [3], the submanifold M is a product of Riemannian manifolds $M_1 \times \cdots \times M_\alpha$, where the tangent bundle of M_α corresponds to T_α. First of all, we shall prove

Theorem 3.1. Let M be an n-dimensional compact totally real submanifold imbedded in a $2m$-dimensional complex Euclidean space C_m. If an f-structure in the normal bundle is parallel and if the mean curvature vector is parallel, then M is a product submanifold $M_1 \times \cdots \times M_\alpha$, where M_α is a compact n_α-dimensional totally real submanifold imbedded in C_{m_α} and M_α is contained in a hypersphere in C_{ma}.

Since the proof is accomplished by the quite same discussion as that in [1] and [6], it is only sketched. Since the ambient space is complex Euclidean, it can not admit compact minimal submanifolds. So, the mean curvature vector \mathcal{J} is not trivial. Furthermore, since \mathcal{J} is parallel in the normal bundle, each shape operator A_γ satisfies $[A^*, A_\gamma]=0$, which implies $A_\gamma T_\alpha \subset T_\alpha$ for any indices γ and α. By means of Moore's Theorem [4], $M=M_1 \times \cdots \times M_\alpha$ is a product submanifold imbedded in $C_m=C_{m_1} \times \cdots \times C_{m_\alpha}$. Moreover, M_α is a totally real submanifold imbedded in some $C_{m_\alpha}^*$, because we can choose an orthonormal basis e_1, \ldots, e_m for JM^*_p and an orthonormal basis $e_{n+1}, \ldots, e_m, e_{n+1}, \ldots, e_{m*}$ for $N(M^*_p)$ in such a way that
$$h_{ij}^{k} = h_{jk}^{i} = h_{ki}^{j}, \quad h_{ij}^\lambda = 0 \quad \text{for} \quad \lambda = n+1, \ldots, m^*.$$Let $\pi_\alpha(\mathcal{J})$ be the component of \mathcal{J} in the subspace $C_{m_\alpha}^*$. Then $\pi_\alpha(\mathcal{J})$ is a parallel mean curvature of M_α in C_{m_α}, and M_α is umbilical with respect to $\pi_\alpha(\mathcal{J})$. Therefore it follows that M_α lies in a small hypersphere
Compact totally real submanifolds with parallel mean curvature vector in a complex space form

in \mathbb{C}^m which is orthogonal to $\pi_a(\mathfrak{f})$, and hence it is a compact minimal submanifold in the hypersphere. This completes the proof.

As a direct consequence of Lemma 2.1 and Theorem 3.1, we have

Theorem 3.2. Let M be an n-dimensional compact totally real submanifold with parallel \mathfrak{f}-structure in the normal bundle imbedded in a complex space form $\mathbb{C}^{2m}(c)$. If the non trivial mean curvature vector is parallel and if the shape operator A^* has no simple roots, then $c=0$. In particular, if $\mathbb{C}^{2m}(c)=\mathbb{C}^m$, then M is a product submanifold $M_1 \times \ldots \times M_a$.

Theorem 3.3. Let M be an n-dimensional compact totally real submanifold with parallel \mathfrak{f}-structure in the normal bundle in a complex space form $\mathbb{C}^{2m}(c)$. If the non trivial mean curvature vector is parallel and if M has no zero sectional curvature, then $c=0$. In particular, if $\mathbb{C}^{2m}(c)=\mathbb{C}^m$, then M must be minimally contained in a hypersphere of positive curvature in \mathbb{C}^m.

Theorem 3.4. Let M be a compact totally real submanifold with parallel \mathfrak{f}-structure in the normal bundle in a complex space form $\mathbb{C}^{2m}(c)$. If the non trivial mean curvature vector is parallel and if the shape operator A^* has mutually distinct eigenvalues, then M is flat and moreover the second fundamental form is parallel.

Bibliography

10. K. Yano, *On a structure defined by a tensor field of type (1, 1) satisfying $f^a + f = 0$*, Tensor N.S., 14(1963), 99-109.

Kyungpook University
Taegu 635, Korea
and
University of Tsukuba
Ibaraki 305, Japan