SUFFICIENT CONDITIONS FOR LOCAL SOLVABILITY OF NONSOLVABLE PSEUDODIFFERENTIAL OPERATORS

JONGSIK KIM, TACKSUN JUNG AND Q-HEUNG CHOI

Introduction

Let D be a pseudodifferential operator acting upon $C^\infty(Q; H^{\pm \infty}(R^n))$. In this paper we consider the existence of local solution of the equation

$$D_u = f$$

for a given $f \in C^\infty(Q \times R^n)$, i.e., we investigate what conditions should be imposed on the function f for the existence of a C^1 solution u of the equation (0.1) in some neighborhood of the origin. We consider only the case when $D = \partial_t + \partial_x B(t, D_x)$ is a nonsolvable operator in a neighborhood of the origin. The main result of this paper is given in Prop. 3.1.

1. Preliminaries

Let R^ν (resp. R^n) be a ν-dimensional (resp. n-dimensional) Euclidean space. Throughout this paper, we shall denote by Q an open subset of R^n and by R_n the dual of R^n. For any real number we denote by $H^s = H^s(R^n)$ the standard Sobolev space on R^n, i.e., the space of tempered distributions u in R^n whose Fourier transform \hat{u} is a measurable function in R^n, satisfying

$$\|u\|_s = (2\pi)^{-\frac{n}{2}} \left(\int (1 + |\xi|^2)^s |\hat{u}(\xi)|^2 d\xi \right)^{\frac{1}{2}} < + \infty.$$

Starting with H^s we build the following spaces

$$H^{-\infty} = \bigcup_{s \in \mathbb{R}} H^s, \quad H^{+\infty} = \bigcap_{s \in \mathbb{R}} H^s.$$

For any real s, let E^s denote the subspace consisting of the generalized functions u whose Fourier transform \hat{u} is a measurable function in R_n satisfying

--- 175 ---
As with the Sobolev spaces, we form the union and intersection of the space \(E_s \), but for \(s \) going to zero:

\[
E^0_0 = \bigcup _{s>0} E_s, \quad E^0_0 = \bigcap _{s>0} E^{-s}.
\]

Let \(t = (t_1, \ldots, t_n) \) denote the variable point in an open set \(\Omega \subset \mathbb{R}^n \). Let \(E \) be any one of the spaces \(H^{\pm \infty}, E^{0\pm} \). If \(p \) is any integer such that \(0 \leq p \leq \nu \), we denote by \(A^pC^\infty(\Omega; E) \) the spaces of \(C^\infty \) \(p \)-form valued in the space \(E \). Thus to say that \(u \) belong to \(A^pC^\infty(\Omega; E) \) is the same as the saying that

\[
u(t, x) = \sum_{|J|=p} u_J dt_J
\]

where \(J \) is an ordered multi-index \((j_1, \ldots, j_p) \) of integers such that \(1 \leq j_1 < \cdots < j_p \leq \nu \), \(|J| \) its length, here equal to \(p \), \(dt = dt_1 dt_2 \ldots \ldots dt_\nu \), and \(u_J \) are \(C^\infty \) functions from \(\Omega \) to \(E \).

Now we consider a \(C^\infty \) one form in \(\Omega \), depending on the parameter \(\xi \) of \(R^n \):

\[
b(t, \xi) = \sum_{j=1}^n b_j(t, \xi) dt_j.
\]

We assume that the one form \(b(t, \xi) \) is exact in \(\Omega \). Thus there exists a primitive \(B \) of \(b \) such that \(b(t, \xi) = dt B(t, \xi) \). We also assume that

1. \(B(t, \xi) \) is real valued and positive homogeneous of degree one with respect to \(\xi \), and
2. \(B(t, \xi) \) is a \(C^\infty \) function of \(t \) in \(\Omega \) with values in \(C^1(R^n \setminus 0) \).

Under these assumptions \(b_j(t, D_x) \) defines naturally a pseudodifferential operator

\[
b_j(t, D_x) u(t, x) = (2\pi)^{-n} \int e^{ix \cdot \xi} b_j(t, \xi) \hat{u}(t, \xi) d\xi.
\]

Here \(\hat{u} \) denotes the Fourier transform with respect to \(x \). We form a pseudodifferential operator

\[
D = d_x + b(t, D_x) A.
\]

For each \(\rho = 0, 1, \ldots, \nu-1 \), it defines a linear operator

\[
D^\rho : A^\rho C^\infty(\Omega; E) \rightarrow A^{\rho+1}C^\infty(\Omega; E).
\]

We set \(D^0 = 0 \). Then obviously we have

\[
D^2 = D^{\rho+1} \circ D^\rho = 0
\]
Sufficient conditions for local solvability of nonsolvable pseudodifferential operators

for any \(p = 0, 1, \ldots, \nu - 1 \). We note that \(\hat{D} = e^{-B(t, \xi)} d_t e^{B(t, \xi)} \). It is evident that \(\hat{D} \), hence also \(D \), generates a complex.

We concern the equation

\[
Du = f,
\]

where \(f \in \mathcal{A}^{p+1}(Q; \mathcal{E}) \). By the Fourier transform with respect to \(x \) we see that (1.1) is equivalent to

\[
d_t (e^{B(t)} f) = e^{B(t)} f \quad \text{(for a.e. } \xi \text{ in } \mathbb{R}^n)\]

We denote by \(\mathcal{S}_p \mathcal{C}^\infty(Q; \mathcal{E}) \) the space of elements \(f \) of \(\mathcal{A}^{p+1}(Q; \mathcal{E}) \) which satisfy the compatibility condition; namely,

\[
(1.3) \quad \text{for a.e. } \xi \text{ in } \mathbb{R}^n, \text{ the } p\text{-form } e^{B(t, \xi)} f(t, \xi) \text{ is a coboundary}
\]

2. Property (\(\psi \)) and the statement of the solvability results.

F. Treves [3] found the necessary and sufficient condition for the solvability of the equation (1.1), which is a natural generalization of the condition (\(P \)) for a single linear partial differential operator. We will state the property (\(\psi \)) and the solvability results in F. Treves [3].

We consider the complex

\[
\cdots \rightarrow \mathcal{A}^p \mathcal{C}^\infty(Q; \mathcal{E}) \xrightarrow{d_p} \mathcal{A}^{p+1}(Q; \mathcal{E}) \rightarrow \cdots.
\]

Let \(Q' \) be a nonempty open subset of \(Q \), possibly equal to \(Q \). Let \(U, V \) be two open subsets of \(Q \) such that \(U \subset Q' \cap V \). For any \(\xi \in \mathbb{R}^n \) and any real \(r \) we write

\[
U(\xi, r) = \{ t \in U; B(t, \xi) < r \}
\]

and similarly with \(V \) substituted for \(U \).

We consider the natural homomorphisms

\[
(2.1) \quad H_p(U(\xi, r)) \xrightarrow{i_p} H_p(Q') \xleftarrow{j_p} H_p(V(\xi, r))
\]

where \(H_p \)'s stand for the \(p \)-th homology groups.

DEFINITION 2.1. We say that the system \(D \) has property (\(\psi \)), in dimension \(p \), in \(Q' \) relative to \(Q \), if to every open subset \(U \subset Q' \) there exists an open set \(V \subset Q \) containing \(U \) such that, given any \(\xi \) in \(\mathbb{R}^n \) and real number \(r \),

\[
(2.2) \quad \ker i_p \subset \ker j_p
\]

We say that \(D \) has property (\(\psi \)), in dimension \(p \) in \(Q \) if it has it in
THEOREM 2.1. Suppose that D does not have property (ϕ), in dimension p, in Ω' relative to Ω. Then there is an element f of $\mathcal{E}_{D}^{p+1}C^{\infty}(\Omega'; H^{+\infty})$ and a relatively compact subset U of Ω' such that

$$Du=f \text{ in } U$$

has no solution u in $A^{p}C^{\infty}(U, H^{-\infty})$.

THEOREM 2.2. Suppose that the system D has property (ϕ), in dimension p, in Ω' relative to Ω. Let E be any one of $H^{\pm\infty}, E^{0\pm}$. Then, given any relatively compact open subset U of Ω' and any element f in $\mathcal{E}_{D}^{p+1}C^{\infty}(\Omega; E)$, the equation

$$Du=f \text{ in } U$$

has a solution u in $A^{p}C^{\infty}(U; E)$.

For the proofs of Theorem 2.1 and Theorem 2.2 see Section II.3 in [3].

REMARK 2.1. When Ω' is homologically trivial in dimension p, the property (2.2) can be stated in a simpler manner. Thus assume that $H_{0}(\Omega')=\mathbb{C}$ and $H_{p}(\Omega')=0$ ($p>0$). Then (2.2) has the following meaning: If $p=0$,

(2.3) any two points in $U(\xi, r)$ can be joined by a continuous path contained in $V(\xi, r)$, whereas, if $p>0$,

(2.4) every p-cycle in $U(\xi, r)$ is homologous to zero in $V(\xi, r)$.

PROPOSITION 2.1. The system D has property (ϕ), in dimension $\nu-1$, in Ω' relative to Ω if and only if any one of the following equivalent properties holds, for any ξ in \mathbb{R}_{n} and any r in \mathbb{R}:

(2.5) The natural homomorphism $H_{\nu-1}(\Omega'(\xi, r)) \rightarrow H_{\nu-1}(\Omega')$ is injective.

(2.6) The natural homomorphism $H^{\nu-1}(\Omega') \rightarrow H^{\nu-1}(\Omega'(\xi, r))$ is surjective.

(2.7) No connected component of $\Omega' \backslash \Omega'(\xi, r)$ is compact

For the proof see [3].

EXAMPLE 2.1. Let $B(t, \xi) = -(t_{1}^{2}+t_{2}^{2})|\xi|$, where $(t_{1}, t_{2}) \in \Omega = (-T_{1}, T_{1}) \times (-T_{2}, T_{2})$ and $\xi \in \mathbb{R}_{n}$. Then $D=d_{x}+d_{t}B(t, D_{x})A$ does not satisfy the property (2.3) when $p=0$ and hence D is a nonsolvable operator in dimension 0, in Ω. Also D does not satisfy the property (2.7) when $p=1$, and therefore D is a nonsolvable operator in dimen-
Remark 2.2. When \(\nu = 1 \), there is only one case: \(p = 0 = \nu - 1 \), and (2.2) is equivalent to (2.7). Let us take \(\Omega' = \Omega \) to be an interval. Then (2.2) is equivalent to (2.3). When \(\nu = 1 \), one deals with a single operator \(D = \partial / \partial t + b(t, D_2) \), where \(b(t, \xi) = \partial B(t, \xi) / \partial t \). It is seen at once that the validity of (2.5) in \(\Omega \) (in dimension zero) is equivalent to the following property:

(2.8) For all \(\xi \in \mathbb{R}^n \) if \(b(t^0, \xi) > 0 \) for some \(t^0 \) in \(\Omega \), then \(b(t, \xi) \leq 0 \) for every \(t \in \Omega, t > t^0 \).

Example 2.2. Let \(B(t, \xi) = -t^2 |\xi|^2 \) and hence \(D = \partial / \partial t + b(t, D_2) \). Let \(\Omega \) be an interval containing the origin. Then \(b(t, \xi) \) does not satisfy condition (2.8) and hence \(D \) is a nonsolvable operator.

3. Sufficient conditions for the solvability of nonsolvable operators

In this section we concern nonsolvable operators. First we deal a single operator \(D = \partial / \partial t + b(t, D_2) \), where \(b(t, \xi) = \partial B(t, \xi) / \partial t \). We will make the assumptions for \(B(t, \xi) \) as follows:

(3.1) For some fixed \(\xi \in \mathbb{R}^n \setminus \{0\} \), \(B(t, \xi) \) has a local maximum at \(t = 0 \), in which case the function \(B(t, \xi) \) of \(t \) is decreasing in \((0, T) \) and increasing in \((-T, 0) \). Let \(V_1 = \{ \xi \in \mathbb{R}^n \setminus \{0\} : B(t, \xi) \) is decreasing in \((0, T) \) and increasing in \((-T, 0) \) with respect to \(t \} \). Then \(V_1 \) is a cone since \(B(t, \xi) \) is positive homogeneous of degree 1 with respect to \(\xi \).

(3.2) For any fixed \(\xi \in \mathbb{R}^n \setminus V_1 \), \(B(t, \xi) \) is a monotone function of \(t \) in \((-T, T) \) or it has a local minimum at \(t = 0 \), in which case \(B(t, \xi) \) is increasing in \((0, T) \) and decreasing in \((-T, 0) \).

If \(B(t, \xi) \) satisfies the condition (3.1), then, from Remark 2.2, we see that the operator \(\partial / \partial t + b(t, D_2) \), where \(\partial B(t, \xi) / \partial t = b(t, \xi) \), is a nonsolvable operator.

Proposition 3.1. Let \(B(t, \xi) \) satisfy the above hypothesis (3.1) and (3.2). Let \(f \in C^0(\mathbb{R}^n \times \mathbb{R}^n) \) and

\[
Kf(x) = (2\pi)^{-n} \int_{-T}^{T} \int_{\mathbb{R}^n} e^{ix \cdot \xi - B(0, \xi) + B(t, \xi)} \chi_{V_1}(\xi) f(s, \xi) ds \, d\xi
\]

be real analytic. Then
has a C^1 solution.

Proof. If we take a Fourier transform (w. r. to x) of the equation (3.3), then we have

$$\frac{\partial \hat{u}}{\partial t} + b(t, \xi) \hat{u} = f(t, \xi).$$

We have a formal solution of the equation (3.4):

$$\hat{u}(t, \xi) = \int_{t_0}^{t} e^{-B(t, \xi) + B(s, \xi)} f(s, \xi) \, ds,$$

where t_0 depends upon ξ. Let

$V_2 = \{ \xi \in \mathbb{R}^n : B(t, \xi) \text{ is a monotone increasing function of } t \text{ in } (-T, T) \}.$

Then for $\xi \in V_2$, we have an integral representation of a solution of the equation (3.4) as follows:

$$\hat{u}(t, \xi) = \int_{-T}^{t} e^{-B(t, \xi) + B(s, \xi)} f(s, \xi) \, ds.$$

In this case $\mathcal{F}^{-1}(\chi_{V_2} \hat{u})$ is a rapidly decreasing function and $\mathcal{F}^{-1}(\chi_{V_2} \hat{u})$ is a C^∞ function of (t, x).

Let $V_3 = \{ \xi \in \mathbb{R}^n \setminus (V_1 \cup V_2) : B(t, \xi) \text{ is decreasing in } (-T, T) \}.$

Then for $\xi \in V_3$, we have an integral representation of a solution of the equation (3.4) as follows:

$$\hat{u}(t, \xi) = -\int_{-T}^{t} e^{-B(t, \xi) + B(s, \xi)} f(s, \xi) \, ds.$$

In this case $\mathcal{F}^{-1}(\chi_{V_3} \hat{u})$ is a rapidly decreasing function and $\mathcal{F}^{-1}(\chi_{V_3} \hat{u})$ is a C^∞ function of (t, x).

Let $V_4 = \{ \xi \in \mathbb{R}^n \setminus (V_1 \cup V_2 \cup V_3) : B(t, \xi) \text{ is increasing in } (0, T) \text{ and decreasing in } (-T, 0) \}.$ Then for $\xi \in V_4$, we have a solution of the equation (3.4) as follows:

$$\hat{u}(t, \xi) = \int_{0}^{t} e^{-B(t, \xi) + B(s, \xi)} f(s, \xi) \, ds.$$

In this case $\mathcal{F}^{-1}(\chi_{V_4} \hat{u})$ is a rapidly decreasing function and $\mathcal{F}^{-1}(\chi_{V_4} \hat{u})$ is a C^∞ function of (t, x).

Let V_1 be a set defined in the condition (3.1). Then for $\xi \in V_1$, if $t > 0$, then we have a solution of the equation (3.4) as follows:
Sufficient conditions for local solvability of nonsolvable pseudodifferential operators

\[\hat{u}(t, \xi) = -\int_t^T e^{-B(t, \xi) + B(s, \xi)} \hat{f}(s, \xi) \, ds. \]

and if \(t < 0 \), we have a solution of the equation (3.4) as follows:

\[\hat{u}(t, \xi) = \int_{-T}^t e^{-B(t, \xi) + B(s, \xi)} \hat{f}(s, \xi) \, ds. \]

In this case

\[\hat{u}(0, \xi) - \hat{u}(-0, \xi) = -\int_{-T}^T e^{-B(0, \xi) + B(s, \xi)} \hat{f}(s, \xi) \, d\xi, \]

which means that \(\hat{u}(t, \xi) \) is not continuous at \(t = 0 \) when \(\xi \in V_1 \). If we denote \(\frac{\partial}{\partial t} \) the derivative in the distribution sense and \(\left[\frac{\partial}{\partial t} \right] \) the classical derivative in \(t = 0 \), then for \(\xi \in V_1 \)

\[\frac{\partial u}{\partial t} = \left[\frac{\partial u}{\partial t} \right] + \delta(t) \left(\hat{u}(0, \xi) - \hat{u}(-0, \xi) \right) \]

Therefore for all \(\xi \in \mathbb{R}^n \), \(\hat{u}(t, \xi) \) is a solution of the following equation

\[\left(\frac{\partial}{\partial t} + b(t, \xi) \right) \hat{u} = \left[\frac{\partial u}{\partial t} \right] + b(t, \xi) \hat{u} + \delta(t) \chi_{V_1}(\xi) \left(\hat{u}(0, \xi) - \hat{u}(-0, \xi) \right) \]

Taking an inverse Fourier transform (w.r.t. \(\xi \)) of the equation (3.5), we have

\[\frac{\partial u}{\partial t} + b(t, D_x) u = f - \delta(t) Kf(x), \]

where

\[Kf(x) = -\mathcal{F}^{-1}(\chi_{V_1}(\xi) \left(\hat{u}(0, \xi) - \hat{u}(-0, \xi) \right)) \]
\[= (2\pi)^{-n} \int_{\mathbb{R}^n} e^{ix \cdot \xi - B(0, \xi) + B(s, \xi)} \chi_{V_1}(\xi) \hat{f}(s, \xi) \, ds \, d\xi. \]

Now

\[(3.7) \quad D(H(t) Kf(x)) = \delta(t) Kf(x) + H(t) b(t, D_x) Kf(x). \]

From (3.6) and (3.7), we have

\[D(u + H(t) Kf(x)) = f + H(t) b(t, D_x) Kf(x). \]

We define a function \(\nu(t, x) \) as follows:

\[\nu(t, x) = - (2\pi)^{-n} \int_{\mathbb{R}^n} b(t, \xi) Kf(\xi) e^{ix \cdot \xi - B(t, \xi) + B(s, \xi)} \, ds \, d\xi \quad \text{if} \quad t \geq 0 \]

and \(\nu(t, x) = 0 \) if \(t < 0 \).

Then we have
$D(u + H(t)Kf(x)) = f$,
and hence $w = u + H(t)Kf(x) + \nu$ is a solution of the equation (3.3). It
is easy to show that w is C^1. The proof is complete.

Next we consider a operator $D = \partial_t + b(t, D_x)A$, where $b(t, \xi) = d_t B(t, \xi)$ and $x \in \mathbb{R}^n$, in an open set $\Omega \subset \mathbb{R}^n$ containing the origin. If for some $\xi \in \mathbb{R}^n \setminus 0$, $B(t, \xi)$ has a local minimum at an interior point of Ω, then we can not guarantee the solvability of D in dimension 0, in Ω. In this section we only concern the particular nonsolvable operators. Let $\Omega = (-T_1, T_1) \times \cdots \times (-T_n, T_n)$. We will make the assumptions for the nonsolvable operator D as follows:

There exists j $(1 \leq j \leq \nu)$ such that both (3.8) and (3.9) holds;

(3.8) For some fixed $\xi \in \mathbb{R}^n \setminus 0$, $B(t, \xi)$ has a local maximum at the origin, in which for any fixed $(t_1, \ldots, t_j, \ldots, t_\nu) B(t, \xi)$ is a decreasing function of t_j in $(0, T_j)$ and increasing function of t_j in $(-T_j, 0)$. Let $V = \{ \xi \in \mathbb{R}^n \setminus 0 : B(t, \xi) \text{ satisfies condition (3.8)} \}$. Then V is a cone since $B(t, \xi)$ is positive homogeneous of degree 1 with respect to ξ.

(3.9) For any fixed $\xi \in \mathbb{R}^n \setminus V$, $B(t, \xi)$ is a monotone function of t_j in $(-T_j, T_j)$ or it has a local minimum at the origin, in which case $B(t, \xi)$ is an increasing function of t_j in $(0, T_j)$ and decreasing function of t_j in $(-T_j, 0)$.

Proposition 3.2. Let $B(t, \xi)$ satisfy the conditions (3.8) and (3.9). Let $f \in \mathcal{E}D^{-1}C_{0}^{\infty}(\Omega \times \mathbb{R}^n)$ and

$$Kf(t_1, \ldots, t_j, \ldots, t, x) = (2\pi)^{-n} \int_{\mathbb{R}^n} \int_{-T_j}^{T_j} e^{ix \cdot \xi - B(t_1, \ldots, t_j, \ldots, t_\nu)} \chi_V(\xi) f(t_1, \ldots, s_j, \ldots, t_\nu, \xi) ds_j d\xi$$

be a real analytic function of x. Then

$Du = f$ in $\Omega \times \mathbb{R}^n$,

Proof. cf. Proposition 3.1.

References

Seoul National University
Seoul 151, Korea
and
Inha University
Inchon 160, Korea