채란계사 및 시설

1. 기술의 수준과 시설의 낙후성

우리의 채란계산업은 사양관리기술면에서 전통적인 강점을 갖추고 있어 그 제도의 성적에 있어 어느 선진제국과 비교하여도 크게 손색이 없는 수준에 올라있다고 보아도 지나치지 않음 것이다.

이것을 적절히 개개농장의 영역 성과 뒷받침 된 소유주 확인관리 형태로서 오는 장점이며, 둘째는 학계, 기관, 부처, 사료, 약품업과 관련분야의 활발한 대농장교류에 의한 기술정보의 전달속에 시 이루어지게 되었고, 농부의 실력을 높여, 대부분 관리효율이나 생산성 등의 측면에서 극히 낙후된 양상을 막고 있는 것이 사실이다.

2. 장래계획에의 접근자세

이러한 여건을 개선시켜가는 노력이 좀더 과학적이고 합리적으로 추진되어야 함은 물론, 특히 시설개수작업이나 농장의 신설증축을 계획하는 경우에는 더욱 이러한 관점에 유의해야 할 것으로 생각된다. 기왕의 비효율적 여건은 그렇게 하더라도 지금 신설이나 개수작업을 계획하는 경우에 는 적어도 향후 10~20년을 내다보고 대비할 수 있는 접근자세가 필요할 것이다.

만약 지금 신설하는 농장이 과거를 담보하기
나 대동소이한 여건으로 이루어지면 이는 두고두
고 장래의 경영에 압박과 마이너스요인으로 작
용할 수 밖에 없지만. 단편적인 예로, 향후
4 5년후면 인턴당 국민소득이 3,000을 대를
상회하게되어 농장인력의 수급이건만해도 지금
과는 완연하게 달라지게되며 이러한 장래를 감
안치 않고 시설을 갖춘다는 것은 오히려 무모하기
까지 한 것이다.

투자여력상 산란계 30,000수의
사업계획을
20,000수로 축소하는 것이 좀 더라도 후회되지 않
은 방향설정이 절반 간한 것이었다. 사실 뛰어
나뜨였던 계산이나 시설이야말로 그에야 메인이고도
비교될 수 없는 사업의 근간이 환경여건에 의
한 생산성 결정의 절대요인이 되는 것이다. 사료
약품, 품종등과는 달리 계산과 시설은 중도의
임의변경이 거의 불가능하기 때문이다.

3. 시설간의 상호연관성

제사시설하여 부지여건, 제사배치, 계사규격,
단열, 사용밀도, 케이지시스템, 수당케이지바닥
면적, 급이 및 급수시설, 환기시설, 계예판지 및
처리시설, 집단시설 등이 주요 포인트가 될 것이
며 이는 어느 한쪽으로 펼쳐서 생각할 수 없는 상
호 밀접한 연관성을 따고 있는 시설들이다. 이들
한 계산 시설들이 종합적으로 조화를 이루었을
때만이 이와서 이상적인 농장조성이 가능하게 된다.

예를 들어, 부지의 입지조건에 계사배치와 계
사규격을 제한하며 육추-육성사나 계예판지장
의 위치를 제한하는 기본상식외에도 수당면적
을 포함한 케이지시스템의 선택은 사용밀도를 결
정하고 이를 또한 환기시설의 용량을 결정하는
절대요소가 된다. 계사규격 자체만으로도 수당
시설투자비를 두배 가까이 변동시킬 수 있고 케
이지시스템의 선택만으로도 수당건축비를 역시
두배 가까이 변동시킬 수 있다. 또한 급수시설
도 케이지시스템과 불가분의 관계를 갖고있어서
마리당 급수시설비용이 케이지 형태에 따라 50~
100%이상 경제적이거나 혹은 비경제적이 될 수
도 있다. 계사배치(Layout) 형태에 따라서는
향후 집단시설에 의한 인·라인시스템(In-line
System)이 가능할 수도 혹은 불가능할 수도 있다.
금수시설과 환기시설은 계예판의 상태에 직접적
인 영향을 주어 계예판관리과정에 막대한 영향을
주게된다. 이러한 시설들의 상호연관성에 대한
심각한 고려와 과학적·실증자료를 바탕으로
한 합리적인 판단이 없이는 실장농장의 구현이란
예측조 어려운 일일수밖에 없다. 계예판 단편
판관을 달성해 나가다보면 앞으로의 농장운영은 갈
수록 점스럽고 매력을 상실하며 상대적 열세를
먹기 어려울 것이다.

4. 발전방향의 주안점

그럼에도 시설면의 이러한 특성에 대한 이해를 전
제하고 한국적 현실을 바탕으로하여 향후 90년
대의 발전방향을 검토해 보고자 한다. 편의상
부분별로 나누어 약술하기로 한다.

* 입지조건 - 상식화되어있는 바와같이 격리상
태, 수원 및 수질, 풍향 등의 고정요인들이 사전
검토 되어있었다.

* 부부지 - 계감의 크기에 따라 시설의 경제
성이나 관리효율의 차이가 크므로 경제적을 이상
의 계사와 위치할 수 있는 부지여건으로 되어있었다.
현재 건전시키는 계감당 7 ~ 8,000수대가
10,000수이상의 규모가 경제성이 비교우위에 있
다고 볼 수 있다. 향후의 확장계획을 감안한 부
지확보는 장기적인 사업구상에 편의와 안정성을
제공할 수 있다.

* 육추육성사 - 성계농장과 격리하는 것이 이상
적이며 불가피한 경우 바람에 붙어오는 방향적
으로, 외부인은 물론 성계관리에의 충돌이 차
단될 수 있는 곳에 위치하는것이 바람직하다.

* 소형과중추사와 중대사사를 별도로 운영해온 기존
방식을 탈피하여 한건물에서 육추와 육성과로
실의 상호식 중대사항을 3단계성격화
지에서 사육하게될 전망이다. 이경우 전당 100수
특집/채란계산업 발전방향

정도의 사육밀도가 표준이며 이방식의 장점은 다 음과 같다.
 첫째, 과거와 같이 초생추사와 중대추사를 이 중으로 투자운영하는 대지, 건물, 시설, 인력의 비경제성이 배제된다.
 둘째, 경제적인 자동화시스템이 채택되므로 방 역프로그램을 제외한 사양관리인이 극소화된다.
 셋째, 자동급여 및 자동환기시설을 통해 균일 한 양질의 육성계를 사육해범으로써 산란성적의 기대효과가 크다.
 넷째, 자동급여의 사료효율개선효과 및 환기시설의 환경개선 요인으로 인하여 육성중 사료소비량을 수당 1kg이상 절감할 수 있다.
 다섯째, 자동화에 의해 관리인이 총일마저도 극히 제한적으므로 때문에 설비구매의 여건이 개선된다.
 여섯째, 중대추사료의 이동스트레스가 없어 3 5일의 육성기간 단축효과가 있다.
 이외에도 선진형 육추육성시설은 더 광범위한 여타 장점을 갖고 있지만 우리나라 기후에선 상 호한기후동물 경우 난방비의 부담이 다소 증가하 는 것이 유일한 단점으로 지적될 수 있다. 난방 방식으로는 보일러, 온도 혹은 난로사용이 가능 하며 제외시 밴더목축에서 경험한 바와같은 육 성계의 출사 unten만은 바른 환기시설의 설계에의 한 설계공간의 원활한 순환기능으로 간단히 해결 될 수 있다.
 -성계사배치-현재의 제분 체분사시설과 향후의 집단시설을 위한 In-line System이 가능한 배치 형태가 가장 이상적이라 할 수 있다. 이외에도 사료의 운반경로, 작업자의 이동경로를 포함한 모 든 자세의 호름(Flow of Materials)이 편의와 방 역의 측면에서 함께 고려되어야 한다.
 - (성)계사
 1) 온도관리
 편안하고 건강한 사육환경을 제공해야 하는 계 사의 조건으로는 첫째 온도관리를 꼭응할 수 있다.
 온도 1℃변동이 사료효율과 생산에 민감한 영향 을 준다는 사실이 이미 과학적인 해석과 충분한 경험을 통해 익히 알고있는 터이다.
 미국농무성의 한 연구는 13C하에서의 계급이 75%를 산란하면서 1파운드의 계급을 생산하는 데 3.5파운드의 사료를 소비한 반면 5℃하에 서는 산란율이 26%에 그치고 1파운드 계란생 산대비 사료소비가 무려 12.3파운드에 달하였다.
 이 업계나 차가 실제 우리나라 농장에서 겪는 현실일 수도 있다. 왜냐하면 계란계가 계란 평균온도를 13℃ 이상으로 유지하는 우수한 농장이 있는 반면 계란물이 열어붙는 농장도 허다하기 때문이다.
 2) 계사단열
 이러한 문제를 극복하는 방법은 계사의 단열을 충분히 재고하고 사육밀도를 적정 고밀도수준으 로 유지하여 가축의 체열로써 설비운동을 원하는 수준에 가깝게 유지하는것이 바람직하다. 채란계의 마리당 체열변생이 평균 10~12Kcal/시간이므로 단열이 갖추어진 계사내에서는 자체체열만으로도 충분한 경제온도수준을 유지할 수 있다.
(표 1 참조)

<table>
<thead>
<tr>
<th>계인</th>
<th>계열생산(21℃下)</th>
</tr>
</thead>
<tbody>
<tr>
<td>평균계중</td>
<td>폐중생산(시간당)</td>
</tr>
<tr>
<td>0.5kg</td>
<td>44.0Btu</td>
</tr>
<tr>
<td>0.9</td>
<td>31.9</td>
</tr>
<tr>
<td>1.4</td>
<td>25.3</td>
</tr>
<tr>
<td>1.8</td>
<td>22.0</td>
</tr>
<tr>
<td>2.3</td>
<td>19.8</td>
</tr>
<tr>
<td>2.7</td>
<td>18.0</td>
</tr>
</tbody>
</table>

*Btu : 4 Btu 1 Kcal

양호한 단열의 기준은 다위를 차단하는데 비해 추위를 차단코자할 경우에 3 5배의 단열이 요구된다.(표 2 참조)
우리나라의 경우, 촉혈기를 대비한 단열이 요구되며 단열재 선택에 신중을 기해야한다. 예를
<table>
<thead>
<tr>
<th>표 2</th>
<th>기후별 R-value 요구치</th>
</tr>
</thead>
<tbody>
<tr>
<td>기후</td>
<td>R-value</td>
</tr>
<tr>
<td></td>
<td>전 장(지붕)</td>
</tr>
<tr>
<td>고운 기후</td>
<td>4</td>
</tr>
<tr>
<td>중간 기후</td>
<td>8</td>
</tr>
<tr>
<td>저온 기후</td>
<td>12~14</td>
</tr>
</tbody>
</table>

표 3: 동일효과기준 단열제별 두께비교

0.59" POLYURETHANE FOAM
1.00" GLASS WOOL BATT
1.04" EXPANDED POLYSTYRENE (MOLDED)
1.05" LOOSE FILL-MINERAL WOOL
1.41" WOOD FIBER SHEATHING (LIGHTWEIGHT)
1.63" VERMICULITE-EXPANDED (LIGHTWEIGHT)
2.96" PLYWOOD
14.8" ASBESTOS CEMENT BOARD
15.6" COMMON BRICK
46.3" CONCRETE, SAND AND GRAVEL

* Thickness of materials required to equal the insulation value of 1 in. glass wool batt. (Structures and Environment Handbook, 7th ed., Midwest Plan Service, Iowa State University, 1975, p. 182, Fig. 214-6).

드면, 두께 2인치 (2.5cm) 기준으로 보온달개, 유리층, 암면 등은 R-value가 3.3~3.7이지만 콘크리트벽으로 된 단열효과를 내려면 46.3인치 (117cm)의 벽을 쌓아야한다. (표 3 참조)

3) 사육밀도

여기에서 파생되는 것이 가축의 자체채열 활용을 위해 적정검사를 요구하는 사육밀도의 문제이다.

현재 우리나라 여건하에서는 3단계지지기준 평당 50~60수가 가장 바람직하며 90년대이후 대규농장에서부터 집단시설을 갖추고자 할 때는 4단 케이지시설이 가능하며 평당 80~90수 이상 시대가 다가오게 된다. 과거의 평균밀도인 평당 30수정도의 수준과 비교하면 과거 300수정가 요구되던 계군을 장차 100평계매에 수용할수 있게 된다. 이에 대지, 건축비, 비중적 시설물 등에서 격감되는 업계난 비용을 제사보완과 자동화시설에 투자하여 생산성과 관리효율이 비약적으로 극대화될 전망이다. (그림 참조)

여기에는 내부시설의 모든면이 조화가 이루어진 서두에 연출한 바와 같다.

케이지형태에 있어서는 3수용케이지가 2수용
내지 4~5수용에 비해 우월하다는것이 외국의 많은 연구결과에 의해 누수히 입증되고 있다. 케이지의 마리당 바닥면적을 감계를 고려할 경우 460㎝²가 권장되고 있다(백색계 요구면적은 380 ㎝²).
4) 하절기 얼스트레스

경제적 밀사를 지향하는 경우, 밀집상태의 얼스트레스에 대한 우려를 간과할 수 없다. 우리나라 흑서기의 기온과 계수규모가 감안함에 앞서 언급한 단열을 갖춘 계산에서는 인기한증기에의 한 공기의 유속으로 흑서기 달의 체감온도를 위험수준이하로 낮추어줄 수 있다. 공기의 유속에 의한 달의 체감온도 냉각효과는 표 4에 보는바와 같다.

<table>
<thead>
<tr>
<th>공기속도 (M/분)</th>
<th>냉각효과 (℃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.0</td>
</tr>
<tr>
<td>15</td>
<td>0.5</td>
</tr>
<tr>
<td>30</td>
<td>1.7</td>
</tr>
<tr>
<td>76</td>
<td>3.4</td>
</tr>
<tr>
<td>152</td>
<td>5.6</td>
</tr>
</tbody>
</table>

* M. F. Tilley, Col. Agric. Engineering, England

주, 초속 1.3m의 바람은 3.4℃정도 체감온도를 낮추어주며 초속2.5m의 바람은 5.6℃정도의 냉각효과가 있다. 우리나라 기온과 달의 Painting 개시점이 평균습도에서 29.4℃인지를 고려할 때, 정확한 환기시점의 활용을 계산해 과습제거와 함께 얼스트레스의 문제를 일차적으로 해결할 수 있다.

열자는 평당 60주 사육필드의 16,000주 국내 계사의 경험을 통해 이 문제를 극복할 수 있다는 확신을 드록하다. 이경우 점진을 대비한 비상발전기(Stand-by Generator)가 마지막 안전장치라 하겠다.

● 케이지 자동화시설 - 자동급이시설에 대해서는 본지 6월호에 기고한바 있으므로 자세한 재론은 약하기로하고 모이동형태의 개선과 사초의 신선도를 유지할 수 있는 찾아방식이 무난하더니 더욱 중시되어야 시설의 진화를 바라할 수 있다.

자동급수시설은 토양과 물의 방식으로 대벌되며 공히 신선한 물의 급수, 물줄을 통한 질병 전염의 차단, 과습해설방지에 고의의 개선효과가 큰 양계장의 주요기초시설이다. 절만시설은 아직 국내에 소개되지 않았고 향후 In-line System으로 진단되는 단계로 본격 수용될 전망이다.

●환기시설 - 온도관리 및 과습제거로부터 질병을 포함한 질병위한 생산성에 관여하는 중대시설로서 본고로서 단편적으로 검토하기 어려운 부분이지만 우리나라 계사협력에서는 최초인 동적의 평균공기요구량을 만족시키는 용량의 Positive System을 사용하는 것이 올바른 선택의 방향이다. 자동화된 시스템이 이미 국내에 널리 보급되어 많은 사양가들이 그 효과를 많이 체험하고 있으며 적정용량의 환기시설을 갖추지 않고는 앞으로 언급한 제한 경제적인 시설의 조성이 예측에 불가능하다는 것을 다시 유의해야한다.

5. 결 언

계사와 시설을 종합적으로 검토한다면 것이 너무도 광범위한 주제이므로 많은 세부사항들을 유보한 본고 전개하였다. 다만, 90년대이후의 체계로 빛나며 현재로서는 아쉬움이 절실한 부분을 담습하지 않도록 비판적인 각도에서 지적하고, 앞으로의 전개방향을 제한한 지면에서 아우르러서 하고자 시도하였다. 제시된 자료는 교과서적인 지식이므로 향후 사양가 여러분의 사업 구상에 단편적으로 나마 참고가 되었으면서는 바람니다.