ON FINITELY GENERATED SEMIPRIME ALGEBRA
OVER COMMUTATIVE RINGS

YOUNG IN KWON AND CHANG WOO HAN

1. Introduction

Let R be a commutative ring. E. P. Armendariz studied in [2] that a semiprime finitely generated R-algebra when R is a regular ring and that by combining the above fact with the results of [6, 7], R is semiprime and every f.g. semiprime R-algebra A is Azumaya if the ring R is regular.

In this paper, we prove converse of Armendariz's theorem and we get a necessary and sufficient condition on which a regular ring R is π-regular.

That is, we have the following results;

1) Let R be a commutative ring. Then the following are equivalent;
 i) R is von Neumann regular.
 ii) R is semiprime and every f.g. semiprime R-algebra is Azumaya.

2) Let R be a commutative ring. Then the following are equivalent;
 i) R is von Neumann regular.
 ii) Every integral extension of R is π-regular.

An algebra A is called Azumaya if R is both central and
separable. The ring R is said to be $P. I. \ ring$ if R satisfies a polynomial identity with coefficients in the centroid and at least one coefficient is invertible. All other notations and terminologies will follow from [2] and [4].

2. Preliminaries

Kaplansky made the following conjecture in [4]: A ring R is von Neumann regular if and only if R is semiprime and each prime factor ring of R is von Neumann regular. That the conjecture fails to hold in general was shown by a counter example of J.W. Fisher and R.L. Snider.

Theorem 2.1 [4]. A ring R is von Neumann regular if and only if R is semiprime, the union of any chain of semiprime ideals of R is a semiprime ideal of R and each prime factor ring of R is von Neumann regular.

Since any finitely generated algebra over a commutative ring satisfies a polynomial identity (is a $P. I. -$algebra), this leads to consideration of semiprime $P. I. -$algebra with regular center.

Theorem 2.2 [2]. Let A be a semiprime finitely generated algebra over a commutative regular ring R. Then A is a regular ring.

The ring R is finitely generated as a ring over its center $Z(R)$, if R is an epimorphic image of a free (non commutative) ring over $Z(R)$ generated by finitely many indeterminates $[x_1,x_2,...,x_n]$ which only commute with elements of $Z(R)$. Following C.Proces, the ring R is called an affine ring if R is finitely generated over its center $Z(R)$.

Theorem 2.3 [7]. Let R be an affine ring. Then the following properties are equivalent:

1) Every simple right R-module is injective.
2) R is von Neumann regular.
3) R is biregular.

Theorem 2.4[2]. Let A be an algebra over a regular ring with center of A being R. A is Azumaya over R if and only if A is a biregular ring which is finitely generated over R.

Combining Theorems 2.2, 2.3 and 2.4, we have the following result.

Theorem 2.5 [2]. Let A be a finitely algebra over a regular ring. The following conditions on A are equivalent:

1) A is semiprime.
2) A is regular.
3) A is biregular.
4) A is semiprime Azumaya algebra.

The following theorem was shown by Storrer.

Theorem 2.6 [4]. Let R be a P.I. ring. Then the following are equivalent:

1) R is π-regular.
2) Each prime ideal of R is primitive.
3) Each prime ideal of R is maximal.
4) R is left (right) π-regular.
5) $R/\text{rad}(R)$ is π-regular, where $\text{rad}(R)$ is prime radical.
6) Each prime factor ring of R is von Neumann regular.

3. Main results

Lemma 3.1. Let R be a commutative prime ring and $0 \neq a$
\[\mathcal{R} \text{. If } A = \begin{pmatrix} a^R & a \mathcal{R} \\ a \mathcal{R} & \mathcal{R} \end{pmatrix} \text{ is Azumaya, then } a \text{ is invertible in } \mathcal{R}. \]

Proof. It is easily checked that \(\mathcal{R} \) coincides with the center \(Z(A) \). Now if \(A \) is Azumaya, \(A \otimes_{\mathcal{R}} A^{\ast} \cong \text{Hom}_{\mathcal{R}}(A, A) \). In this case \(\sigma(a \otimes b)(x) = axb \) for \(x \in \mathcal{A} \).

Consider \(f \in \text{Hom}_{\mathcal{R}}(A, A) \) such that \(f \left(\begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \right) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \).

Then since \(A \) is Azumaya, there are \(\begin{pmatrix} x_i & ay_i \\ az_i & w_i \end{pmatrix} \) and \(\begin{pmatrix} x_i' & ay_i' \\ az_i' & w_i' \end{pmatrix} \) in \(A \), \(1 \leq i \leq n \) for some \(n \) such that

\[
\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \sum_{i=1}^{n} \begin{pmatrix} x_i & ay_i \\ az_i & w_i \end{pmatrix} \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_i' & ay_i' \\ az_i' & w_i' \end{pmatrix}.
\]

By this relation, we have \(1 \in a^2 \mathcal{R} \) and so \(a \) is invertible in \(\mathcal{R} \).

Theorem 3.2. Let \(\mathcal{R} \) be a commutative ring. Then the following are equivalent.

1) \(\mathcal{R} \) is von Neumann regular.

2) \(\mathcal{R} \) is semiprime and every \(f, g \)-semiprime \(\mathcal{R} \)-algebra \(A \) is Azumaya.

Proof. Assume that \(\mathcal{R} \) is von Neumann regular. By Theorem 2.5, \(A \) is Azumaya algebra.

For the opposite direction, let \(\mathcal{P} \) be a prime ideal of \(\mathcal{R} \). We will show that \(\mathcal{P} \) is a maximal ideal of \(\mathcal{R} \). Now, take \(a \in \mathcal{R} \) and consider an \(\mathcal{R} \)-algebra \(A = \begin{pmatrix} a^R & a \mathcal{R} \\ a \mathcal{R} & \mathcal{R} \end{pmatrix} \). Then \(A \) is a finitely generated semiprime algebra over \(\mathcal{R} \). In this case, the center \(Z(A) = \{ \begin{pmatrix} x & 0 \\ 0 & w \end{pmatrix} \mid (x-w)a = 0 \} \). By our assumption, \(A \) is separable over \(Z(A) \).
Consider the mapping \(\sigma: A \to \left(\frac{R/P}{aR/P} \right) \) with \(\sigma \left[\begin{array}{c} x \\ ay \\ az \\ w \end{array} \right] = \left(\begin{array}{c} x + \bar{p} \\ ay + \bar{p} \\ az + \bar{p} \\ w + \bar{p} \end{array} \right) \), where \(\bar{a} = a + \bar{p} \). Then since \(a \not\in P \), we have that \(\text{Ker} \sigma = \{ \left(\begin{array}{c} x \\ ay \\ az \\ w \end{array} \right) | x, y, z, w \in P \} = PA \). Therefore \(A/PA \cong \left(\begin{array}{cc} R/P & \bar{a}R/P \\ \bar{a}R/P & R/P \end{array} \right) \).

Now since \(PZ(A)A=PA \) and \(A \) is Azumaya, we have \(PA \cap Z(A)=PZ(A) \). So \(A/PA \) is Azumaya over \(Z(A)/PZ(A) \). Also in this case \(Z(A/PA)=Z(A)/PZ(A) \) [1]. But since \(A/PA \cong \left(\begin{array}{cc} R/P & \bar{a}R/P \\ \bar{a}R/P & R/P \end{array} \right) \), we have \(Z(A/PA) \cong R/P \), So \(\left(\begin{array}{cc} R/P & \bar{a}R/P \\ \bar{a}R/P & R/P \end{array} \right) \) is Azumaya over \(-R/P \). Therefore, by our Lemma 3.1, \(\bar{a} \) is invertible in \(R/P \). Hence \(R/P \) is a field. Thus \(R \) is a von Neumann regular ring.

Corollary 3.3. Let \(R \) be a commutative ring, then the following are equivalent:

1) \(R \) is von Neumann regular.

2) \(R \) is semiprime and for every finitely generated \(R \)-algebra \(A \), \(J(A) \) is nilpotent and \(A/J(A) \) is Azumaya.

Proof. In [2], E. P. Armendariz proved that if \(R \) is von Neumann regular then \(J(A) \) is nilpotent and \(A/J(A) \) is a regular ring.

Conversely, let \(P \) be a prime ideal and \(a \not\in P \). Then \(A=\left(\begin{array}{cc} R & aR \\ aR & R \end{array} \right) \) is finitely generated semiprime \(R \)-regular.

But since \(A \) is a normalizing finite extension of \(R \), we have
0 = J(R) = R ∩ J(A) and so \(R \cong A/J(A) \). This shows that \(A/J(A) \) is \(R \)-algebra.

Now since \(A \) is semiprime and \(J(A) \) is nilpotent, \(J(A) = 0 \). Therefore \(A \) is Azumaya. By Theorem 3.2, \(R \) is von Neumann regular.

Let \(A \) be a ring with identity. Consider the condition (*) the ring \(A \) satisfies a polynomial identity \(f(x_1, x_2, \ldots, x_n) = 0 \) for which \(f \) has coefficient in \(C \), the center of \(A \), and for which at each prime ideal \(P \) of \(A \), \(f \) induces a nontrivial polynomial identity on \(A/P \).

Theorem 3.4 [5]. Let \(A \) be a ring with identity which is integral over unital subring \(B \) of \(C \), the center of \(A \), suppose further that \(B \) satisfies (*), then; If \(P \) is prime ideal of \(A \), \(P \) is maximal ideal of \(A \) if and only if \(P \cap A \) is maximal ideal of \(B \).

Theorem 3.5. Let \(R \) be a commutative ring. Then the following are equivalent;
1) \(R \) is von Neumann regular.
2) Every integral extension of \(R \) is \(\pi \)-regular.

Proof. Suppose that \(R \) is von Neumann regular and \(A \) is integral extension of \(R \). To show that \(A \) is \(\pi \)-regular, let \(P \) be a prime ideal of \(A \). Then \(A/P \) is integral over \(R/P \cap R \). Since \(P \) is a maximal ideal of \(A \), \(P \cap R \) is maximal ideal of \(R \). Therefore \(R/P \cap R \) is a field. By Theorem 2.6, \(A/P \) is \(\pi \)-regular. Thus \(A \) is \(\pi \)-regular. Conversely, since \(A = \begin{pmatrix} R & R \\ R & R \end{pmatrix} \) is integral extension of \(R \), it is \(\pi \)-regular. It follows that \(R \) is von Neumann regular.
References

Department of Mathematics Education
Gyeongsang National University
Chinju 620
Korea

Department of Mathematics
Dong-A University
Pusan 600-02
Korea

Received March 2, 1987