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ON INTEGRAL MEANS OF DERIVATIVES OF
UNIVALENT FUNCTIONS

M. M. EvrLnosn

Let S denote the class of univalent functions normalized so that £(0)
=f"(0)—1=0 in |z|<1. Let S,*, —z/2<a<z/2, denote the subclass
of § that satisfies Re e ?zf’(2)/f(2) >0 in |z|<1; then f is called
a-spiral-like and the case =0 is the class of normalized starlike functions
[6, p.52]. Let T denote the class of functions f normalized as above
and satisfying Im z[Im f(2)7>0 in |z|<{1; then f is called typically
real and T contains those functions of S whose coefficients are real
[6, p.55].

Also, in view of [6, p.231], let B(A) be the class of function
normalized as above and map |z|[<{1 onto the complement of an arc
with radial angle 1(0<CA<{z/2). The radial angle is meant to be the
angle between the tangent and radial vectors to the arc. This note
includes a sharp version for Corollary 1 of [2] when f&8,* as well as
a logarithmic coefficient estimate.

1. Integral means

THEOREM 1. Let f&8,* and k(z) =2(1—=2)72; then for z=re'®
(0<r<<1) and — co< p< oo we have

[F12r7@ 10 11a0< [ 715K () /() 1%a0,
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Proof. The second inequality is due to Leung (see [6, Theorem
7.21) and the proof of the first inequality is a straightforward application
of Baernstein’s *—function argument (see [2, Theorem 1], [6, Chapter
71). Note that from the definition of S,* above, we may write e“zf’
(2) /f(2)=F(z) where F(z) is a function with positive real part (see
[7, Vol. I, p.148]). Thus, as in the proof of Theorem 7.2 of [6],
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we have
[tlog |1+7‘e"9

| 1—retf

2f' (=
f(z)

* . *
] = (+4-logle " F (2) |)*< []og ]
=K (2) ] *

k(z) )

Our inequality now follows by setting («) =exp[pu] in Lemma 5 of [6].

= [tlog

ReEMARK 1. Theorem 1 holds for the class T° (note that functions in
T are not necessarily univalent) by the argument used in [9] and the
inclusion properties mentioned in [4, p.92] and [9, p.374]. Namely
that T is contained in the closed convex hull of Sy*.

THEOREM 2. Let fES8 and k(z) =2(1—=2)"2; then we have for p=1,
2,3, that
|10 Gy 1ran< [ (1K ) 0.

Proof. We see from De Brange’s celebrated result [5] that f/(z) <
(1-+2) (1—2) 7% where, as in [7, Vol.II, Theorem 5], < means that
if X ¢,2*< > D,z then |¢,| <D,, n=1,2,3,---. Thus, for a positive
integer p we have [f/(2)]?<[(1+2)/(1—=)3]?. This implies that if
[f(2)1P=2c,(p)z" and [(1+2)/(1—2)%]*=% D,z", then |c,(p)|<

D,(p), where n=1, 2, 3, ---. Using this and Parseval’s identity, we
deduce that

[P157@ 17d0=22 5 le, () 1?27 <2m 3, D2 (p)ron
S NLCIRY
0
as required in Theorem 2.

THEOREM 3. Let F(z) satisfy Re F(z)>0 and F(0)=1 in |2|<1;
then for k(2)=(1+z2) 1—2)7! and — o< p< oo we have

2 2
717 @ 12a0= [ 1k 128,
0 0
2z 2
j ]F’(z)l”dOSJ ¥ (2) |2d0
0 0

where z=reé?? and 0<r<1.

This theorem fills the gap in [7, Vol.II, p.20], [8, Theorem 4]
and [9, p.373]. We omit the proof of this theorem since it follows
exactly the proof of Theorem 3 by applying the *—function.
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2. Logarithmic coeflicients estimate

THEOREM 4. Let fEB(2) and log f(2)/2=2 Zw 72" Then for n>1
n=}

we have

1721 <A/,

where A () is a constant depending on A only and not necessarily the same
whenever it occurs in the rest of this note.

To prove Theorem 4 we need the following result.
LEMMA. Let f&B(2). Then for z=re!? (0<r<1) we have

Lo
2z
)

zf"(2) |7
f(2)
Proof. In view of [2, p.340] we may define f(z) by the equation
izf/ () /f(z) = (?—2)g(z)/ (1—2) (1)
where 0 ¢<2z and geB() for some i€ (0, x/2). Differentiating
this, rearranging, taking the modulus bound and integrating with

respect to f (0<0<2x), we deduce, for z=re?? (0<r<1), with the
help of Schwarz’s inequality and Corollary 1 of [2] that

zzf” (Q 27| zf’(z)__2

|
do J—?(j')

.[zn (=) dOSJO F(z) df
s e S )+ [ )
QINF==EON

<A/ (1—r)

as required. Note that g(z)&B(1) and hence Corollary 1 of [2] is
applicable.
Similarly we deduce the second inequality of the lemma from (1).

Proof of Theorem 4. We see from the hypothesis of this theorem
that [=f/(2)/f(2)] =2 Z n’r,2""1, Applying the coeflicients formula to

this we deduce, using Schwarz s inequality and the lemma, that
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