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SOME PROPERTIES OF SCHRODINGER OPERATORS

Han-Soo KM and Lee-CHAE JANG

1. Introduction

The aim of this note is to study some properties of Schrodinger
operators, the magnetic case,

Hy(a) = 5 (—iF —a)?

H(a) =Hy(a) +V, where a=(ag, -+ ,a,) €L, and Vis a potential
energy.

Also, we are interested in solutions, ¢, of H(a)¢)=E¢ in the sense
that (¢, e tH@Y)=¢E(pH, T) for all FeCy”(R") (see B. Simon [1]).

In section 2, under some conditions, we find that a semibounded
quadratic form of H(a) exists and that the Schrédinger operator H(a)
with Re V>0 is accretive on a form domain Q(Hy(a)). But, it is

well-known that the Schrddinger operator H Z%A—F V with Re V>0 is

accretive on C,"(R*) in N Okazawa [4].
In section 3, we want to discuss L’ estimates of Schrodinger
semigroups.

2. Schrodinger operators, the magnetic case

A quadratic form is a map ¢ : Q(g) XQ(q) — C where Q(g) is a dense
linear subset of a Hilbert space H called the form domain such that
q(+, &) is semilinear and ¢(¢, -) is linear for ¢, ¥€Q(q).

If g(¢, &) >—M||)||2 for some M, we say that g is semibounded.

THEOREM 2.1. Let acL?,, and let Hy(a) denote the self-adjoint
operator whose form domain is {$p<L*(R*)| iV +a)Ppe L2(R?, R*)} with
(¢, Hy(a)d) =l +a)ll%

Then for any real wvalued function VEL"(R®), there exists the
semibounded quadratic form q satisfying q(¢, T)= (), H@@)¥), for all
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&, ¥ € Q=0 (Hy(a)).
Proof. Since Q{q) =Q(Hy(a)), (¢, Ho(a)¥) exists.
And we have,

(6 V) =1[@ V@ Tzl

<IVIL[16@ T (@) |daeo
So q(, T)Y=(¢, Ho(a)¥)+ (¢, VT) exists, i.e. ¢ is well-defined.
Therefore it is easy to show that ¢ is the quadratic form on @Q(g).

Also, we have
q(¢, O)Y=(¢, H(a)d)
= (¢, Hola)) + (¢, V)

=GP +a) gl |19 (@) 12V (@)dre
=G+ @) ¢l 16 @ 12V @ 19 12V (2 dna

=~ [ 16@ V- @daz—IVIL| 1600 120
JR JR

=— || VIlll¢ll2?
This completes the proof.
REMARK. Since a¢ € L%, it defines a distribution and the symbol
(iF +a)¢& L? means the distributional sum lies in L2
A linear operator A with domain D(A) and range R(A) in L2(R7)
is said to be accretive if Re (¢, A¢) >0 for all p= D(A). Here (¢, T)
is semilinear in ¢» and linear in 7.

THEOREM 2.2. Let Iy(a) be as theorem 2.1. Then for any V&
L7 (R*) with Re V>0, H(a) is accretive on a form domain Q(Hy(a)).

Proof. For ¢=Q(Hy(a)), we have
(¢, H(a)p)=(¢, Hola)p)+ (¢, Vi)
=@ +a)¢l*+ (¢, Re V) +il¢, Im V)

So Re (¢, H(@)¢) =G +a)¢l2+| 1¢(2) 12Re Viz)dra 20,

R
3. L” estimates of Schridinger semigroups

A real-valued measurable function V in R” is said to lie in K, if

and only if
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(a) If n>3
lilnol[sup ) |z—y|~ =21V (y) |d"y]=0

z Jlr-yl
(b)Y If n=2
limfsup| —In{lz=517) | V() 1a%1=0
(¢) If n=1

sgpjh_ym | V() ldy<loo

We say V is in K¢ if and only if VX, € K, for all r, where X,
is the characteristic function of {z| |z|<r}.

THEOREM 3.1. Let V&K, with V>0. If Hy(a) is a positive
sel f-adjoint operator on a form domain Q(Hy(a)) and if there is a
Sfunction A in C°NL” such that a;=1i0;A for j=1,2, -+, n, then

(1) There exist some constants M >0 and b>>0 such that

| (e tH@F) (z) | <Me#* for all T<=Cy™(R?).
(2) For all T&Cy”(R?), (&, etH@T) makes sense if ¢ obeys
) (x) | <CQA+ 12N for some C and N.

Proof. (1) By the second hypothesis and [2, p.191, Remark 3],
e~ ti3;—ap? — pdptd 22 {or 7=1,2, -, n.
By the first hypothesis and the trotter product,
e tH@ =g |im [e~tHot@/ mg=tV/m]m

m—oo

=s—lim [e~t@0y=e?/ meus =t (0,=a,) 2 mp=tV/ mm

m—roo

— s lim [f01?/ meveptd,2/ m] o=
=00
— php—tHg1
If etH@(x y), e tH(a, are integral Kernels of e~tH@ = —tH
y Y Y ’
respectively, then we have e tH@ (z, y) =e*@e~H(z, y)e 2P,

So, for TF=Cy”(R?),
(DT (2) | = | ettt (z, )e AP U (5)d" ]
Rﬂ
=@ | [etH (e72T) ] (2) |
<|letll..Cie822, for some C, and b,
by [1, p.349, (1,6)].

This completes the proof of (1).
(2) Let TFeCy™(R"). Since |¢(x) | <CA+|z])V,
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@y @) | =] 5@ H1OD) @) |dn

=CM[ (1 |a])¥ebaadne<oo, by (1).

Let Li#(R") = {¢| (1+a%)% 2pe L?(R™)} for any &, positive or negative
with ||{{l5, ;=11 (1+22)% %), and let ||All3 52 5 be the norm of a map A
from L2(R") to Ls2(R").

PROPOSITION 3.2. Let VEK, > with V>0. If Hy(a) is as theorem
3.1 and if there exists a function A in L™ such that a;=10;A for j=1,
2, -+, n, then e7H@ 1 L2(R") — L?(R*) is a bounded map obeying
llemtH@||, 5.0 5<CeAt for some C and A.

Proof. Let ¢=Ls2(R*), Then, we have
1
et @l o= [ (1222 (H @) (2) |2ane |F

| [ a1 21 et )] (o) f2anaT
<l [ (12 femst i) ) (o) 12ana

= et lle™H (=4 |12, 5
<leH]] Credtlle4d|l5 5, for some C; and A,
by [1, proposition 2.1].
Hence |le7 7@y 55 5<|l€f]],[le™]Ciett, since |le 2]y 5< el lih]]2, 5.
This completes the proof.
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