SOME PROPERTIES OF SCHRÖDINGER OPERATORS

HAN-SOO KIM and LEE-CHAE JANG

1. Introduction

The aim of this note is to study some properties of Schrödinger operators, the magnetic case,

$$H_0(a) = \frac{1}{2}(-i\nabla - a)^2$$
;

 $H(a) = H_0(a) + V$, where $a = (a_1, \dots, a_n) \in L^2_{loc}$ and V is a potential energy.

Also, we are interested in solutions, ψ , of $H(a)\psi = E\psi$ in the sense that $(\psi, e^{-tH(a)}\Psi) = e^{-tE}(\psi, \Psi)$ for all $\Psi \in C_0^{\infty}(\mathbb{R}^n)$ (see B. Simon [1]).

In section 2, under some conditions, we find that a semibounded quadratic form of H(a) exists and that the Schrödinger operator H(a) with Re $V \ge 0$ is accretive on a form domain $Q(H_0(a))$. But, it is well-known that the Schrödinger operator $H = \frac{1}{2} \mathcal{A} + V$ with Re $V \ge 0$ is accretive on $C_0^{\infty}(R^n)$ in N Okazawa [4].

In section 3, we want to discuss L^p estimates of Schrödinger semigroups.

2. Schrödinger operators, the magnetic case

A quadratic form is a map $q: Q(q) \times Q(q) \to C$ where Q(q) is a dense linear subset of a Hilbert space H called the form domain such that $q(\cdot, \mathbb{F})$ is semilinear and $q(\psi, \cdot)$ is linear for $\psi, \mathbb{F} \in Q(q)$.

If $q(\phi, \Psi) \ge -M||\phi||^2$ for some M, we say that q is semibounded.

THEOREM 2.1. Let $a \in L^2_{loc}$ and let $H_0(a)$ denote the self-adjoint operator whose form domain is $\{\psi \in L^2(\mathbb{R}^n) \mid (i\overline{V} + a)\psi \in L^2(\mathbb{R}^n, \mathbb{R}^n)\}$ with $(\psi, H_0(a)\psi) = \|(i\overline{V} + a)\psi\|^2$.

Then for any real valued function $V \in L^{\infty}(\mathbb{R}^n)$, there exists the semibounded quadratic form q satisfying $q(\phi, \Psi) = (\phi, H(a)\Psi)$, for all

$$\phi, \Psi \in Q(q) \equiv Q(H_0(a)).$$

Proof. Since $Q(q) = Q(H_0(a))$, $(\phi, H_0(a) \varPsi)$ exists. And we have,

$$| (\psi, V \Psi) | = | \int \overline{\psi(x)} V(x) \Psi(x) dx |$$

 $\leq ||V||_{\infty} \int |\overline{\psi(x)} \Psi(x)| dx < \infty$

So $q(\phi, \Psi) = (\phi, H_0(a)\Psi) + (\phi, V\Psi)$ exists, i.e. q is well-defined. Therefore it is easy to show that q is the quadratic form on Q(q). Also, we have

$$\begin{split} q(\dot{\phi}, \ \dot{\phi}) &= (\dot{\phi}, \ H(a)\dot{\phi}) \\ &= (\dot{\phi}, \ H_0(a)\dot{\phi}) + (\dot{\phi}, \ V\dot{\phi}) \\ &= \|(i\nabla + a) \ \dot{\phi}\|^2 + \int_{R^n} |\dot{\phi}(x)|^2 V(x) d^n x \\ &= \|(i\nabla + a) \ \dot{\phi}\|^2 + \int_{R^n} |\dot{\phi}(x)|^2 V^+(x) d^n x - \int_{R^n} |\dot{\phi}(x)|^2 V^-(x) d^n x \\ &\geq - \int_{R^n} |\dot{\phi}(x)|^2 V^-(x) d^n x \geq - \|V\|_{\infty} \int_{R^n} |\dot{\phi}(x)|^2 d^n x \\ &= - \|V\|_{\infty} \|\dot{\phi}\|_2^2 \end{split}$$

This completes the proof.

REMARK. Since $a\psi \in L^2_{loc}$ it defines a distribution and the symbol $(i\nabla + a)\psi \in L^2$ means the distributional sum lies in L^2 .

A linear operator A with domain D(A) and range R(A) in $L^2(\mathbb{R}^n)$ is said to be accretive if $\text{Re }(\phi, A\phi) \geq 0$ for all $\phi \in D(A)$. Here (ϕ, \mathbb{V}) is semilinear in ϕ and linear in \mathbb{V} .

THEOREM 2.2. Let $H_0(a)$ be as theorem 2.1. Then for any $V \in L^{\infty}(\mathbb{R}^n)$ with $\mathbb{R}^n \in V \geq 0$, H(a) is accretive on a form domain $Q(H_0(a))$.

Proof. For
$$\phi \in Q(H_0(a))$$
, we have $(\phi, H(a)\phi) = (\phi, H_0(a)\phi) + (\phi, V\phi)$ $= ||(iV + a)\phi||^2 + (\phi, \text{Re } V\phi) + i(\phi, \text{Im } V\phi)$ So Re $(\phi, H(a)\phi) = ||(iV + a)\phi||^2 + \int_{p^n} |\phi(x)|^2 \text{Re } V(x)d^nx \ge 0.$

3. L^p estimates of Schrödinger semigroups

A real-valued measurable function V in \mathbb{R}^n is said to lie in K_n if and only if

(a) If
$$n \ge 3$$

$$\lim_{\alpha \downarrow 0} \left[\sup_{x} \int_{|x-y| \le \alpha} |x-y|^{-(n-2)} |V(y)| d^n y \right] = 0$$

(b) If n = 2

$$\lim_{\alpha \to 0} \left[\sup_{x} \int_{|x-y| \le \alpha} \ln \{|x-y|^{-1}\} | V(y) | d^2y \right] = 0$$

(c) If n=1

$$\sup_{x} \int_{|x-y| \le 1} |V(y)| dy < \infty$$

We say V is in K_n^{loc} if and only if $VX_r \in K_n$ for all r, where X_r is the characteristic function of $\{x \mid |x| \leq r\}$.

THEOREM 3.1. Let $V \in K_n^{loc}$ with $V \ge 0$. If $H_0(a)$ is a positive self-adjoint operator on a form domain $Q(H_0(a))$ and if there is a function λ in $C^{\infty} \cap L^{\infty}$ such that $a_i = i\partial_i \lambda$ for $j = 1, 2, \dots, n$, then

- (1) There exist some constants M>0 and b>0 such that $|(e^{-tH(a)}\Psi)(x)| \leq Me^{-bx^2}$ for all $\Psi \in C_0^{\infty}(\mathbb{R}^n)$.
- (2) For all $\Psi \in C_0^{\infty}(\mathbb{R}^n)$, $(\psi, e^{-tH(a)}\Psi)$ makes sense if ψ obeys $|\psi(x)| \leq C(1+|x|)^N$ for some C and N.

Proof. (1) By the second hypothesis and [2, p. 191, Remark 3], $e^{-t(i\partial_j - a_j)^2} = e^{\lambda} e^{t\partial_j^2} e^{-\lambda}$ for $j = 1, 2, \dots, n$.

By the first hypothesis and the trotter product,

$$\begin{split} e^{-tH(a)} &= s - \lim_{m \to \infty} \left[e^{-tH_0(a)/m} e^{-tV/m} \right]^m \\ &= s - \lim_{m \to \infty} \left[e^{-t(i\partial_1 - a_1)^2/m} \cdots e^{-t(i\partial_n - a_n)^2/m} e^{-tV/m} \right]^m \\ &= e^{\lambda} s - \lim_{m \to \infty} \left[e^{t\partial_1^2/m} \cdots e^{t\partial_n^2/m} \right]^m e^{-\lambda} \\ &= e^{\lambda} e^{-tH} e^{-\lambda} \end{split}$$

If $e^{-tH(a)}(x, y)$, $e^{-tH}(x, y)$ are integral Kernels of $e^{-tH(a)}$, e^{-tH} , respectively, then we have $e^{-tH(a)}(x, y) = e^{\lambda(x)}e^{-tH}(x, y)e^{-\lambda(y)}$. So, for $\Psi \in C_0^{\infty}(\mathbb{R}^n)$,

$$|(e^{-tH(a)}\Psi)(x)| = |\int_{\mathbb{R}^n} e^{\lambda(x)} e^{-tH}(x, y) e^{-\lambda(y)} \Psi(y) d^n y|$$

$$= e^{\lambda(x)} |[e^{-tH}(e^{-\lambda}\Psi)](x)|$$

$$\leq ||e^{\lambda}||_{\infty} C_1 e^{-bx^2}, \text{ for some } C_1 \text{ and } b,$$

by [1, p. 349, (1, 6)].

This completes the proof of (1).

(2) Let $\Psi \in C_0^{\infty}(\mathbb{R}^n)$. Since $|\psi(x)| \leq C(1+|x|)^N$,

$$\begin{aligned} |(\psi, e^{-tH(a)}\Psi)| &\leq \int_{\mathbb{R}^n} |\psi(x)| |(e^{-tH(a)}\Psi)(x)| d^n x \\ &= CM \int_{\mathbb{R}^n} (1+|x|)^N e^{-bx^2} d^n x < \infty, \text{ by (1).} \end{aligned}$$

Let $L_{\delta^2}(R^n) = \{ \psi \mid (1+x^2)^{\delta/2} \psi \in L^2(R^n) \}$ for any δ , positive or negative with $\|\psi\|_{2,\delta} = \|(1+x^2)^{\delta/2} \psi\|_2$ and let $\|A\|_{2,\delta;2,\delta}$ be the norm of a map A from $L_{\delta^2}(R^n)$ to $L_{\delta^2}(R^n)$.

PROPOSITION 3.2. Let $V \in K_n^{\text{loc}}$ with $V \ge 0$. If $H_0(a)$ is as theorem 3.1 and if there exists a function λ in L^{∞} such that $a_j = i\partial_j \lambda$ for j = 1, $2, \dots, n$, then $e^{-tH(a)} : L_{\delta}^2(R^n) \to L_{\delta}^2(R^n)$ is a bounded map obeying $||e^{-tH(a)}||_{2,\delta;2,\delta} \le Ce^{At}$ for some C and A.

Proof. Let
$$\psi \in L_{\delta}^{2}(R^{n})$$
. Then, we have
$$||e^{-tH(a)}\psi||_{2,\,\delta} = \left[\int_{R^{n}} (1+x^{2})^{\delta} | (e^{-tH(a)}\psi)(x)|^{2} d^{n}x\right]^{\frac{1}{2}}$$

$$= \left[\int_{R^{n}} (1+x^{2})^{\delta} | e^{\lambda(x)}|^{2} | [e^{-tH}(e^{-\lambda}\psi)](x)|^{2} d^{n}x\right]^{\frac{1}{2}}$$

$$\leq ||e^{\lambda}||_{\infty} \left[\int_{R^{n}} (1+x^{2})^{\delta} | [e^{-tH}(e^{-\lambda}\psi)](x)|^{2} d^{n}x\right]^{\frac{1}{2}}$$

$$= ||e^{\lambda}||_{\infty} ||e^{-tH}(e^{-\lambda}\psi)||_{2,\,\delta}$$

$$\leq ||e^{\lambda}||_{\infty} C_{1} e^{At} ||e^{-\lambda}\psi||_{2,\,\delta}, \text{ for some } C_{1} \text{ and } A,$$

by [1, proposition 2.1].

Hence $||e^{-tH(a)}||_{2,\,\delta;2,\,\delta} \leq ||e^{\lambda}||_{\infty} ||e^{-\lambda}||_{\infty} C_1 e^{\mathrm{At}}$, since $||e^{-\lambda}\psi||_{2,\,\delta} \leq ||e^{-\lambda}||_{\infty} ||\psi||_{2,\,\delta}$. This completes the proof.

References

- B. Simon, Spectrum and Continuum, eigenfunctions of Schrödinger operators,
 J. Funct. Anal. Vol. 42 (1981), 347-355.
- 2. B. Simon, *Schrödinger semigroups*, Bull. A.M.S. Vol. 7, No. 3 (1982), 447-526.
- 3. M. Reed and B. Simon, Methods of Modern Mathematical Physics I, Functional analysis, Academic Press, New York, 1975.
- N. Okazawa, An L^p theory for Schrödinger operators with nonnegative potentials, J. Math. Soc. Japan Vol. 36, No. 4 (1984), 675-688.

Kyungpook National University Daegu 635, Korea