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RECENT DEVELOPMENTS IN DIFFERENTIAL
GEOMETRY AND MATHEMATICAL PHYSICS

F.]. FLAUERTY

I want to focus on developments in the areas of general relativity
and gauge theory. The topics to be considered are the singularity
theorems of Hawking and Penrose, the positivity of mass, instantons
on the four-dimensional sphere, and the string picture of quantum
gravity. I should mention that I will not have time to discuss either
classical mechanics or symplectic structures. This is especially unfortunate,
because one of the roots of differential geometry is planted firmly in
mechanics, Cf. [GS].

The French geometer Elie Cartan first formulated his invariant
approach to geometry in a series of papers on affine connections and
general relativity, Cf. [C]. Cartan was trying to recast the Newtonian
theory of gravity in the same framework as Einstein’s theory. From
the historical perspective it is significant that Cartan found relativity a
convenient framework for his ideas. At about the same time
Hermann Weyl in troduced the idea of gauge theory into geometry for
purposes much different than those for which it would ultimately prove
successful, Cf. [W]. Weyl wanted to unify gravity with electromag-
netism and though that a conformal structure would fulfill the task but
Einstein rebutted this approach.

1. General relativity

Let M denote a smooth four-manifold with Lorentzian structure Lap>
whose index is one. M will be referred to as—spacetime. Thus in
normal co-ordinates at a point P the form of 8as is diag(—1,1,1,1).
(Lower case Greek letters used as indices will always have the range
0,1,2,3.) This proves that special relativity is still valid even if
gravitational effects are ignored. Although the Lorentzian structure does
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not have the same local topological implications that a Riemannian
(positive definite g,z) structure has, it still yields arclength for smooth
curves and a separation of regular curves into timelike, spacelike, and
null categories, depending on the nature of the tangent vector field T’
to the curve. A timelike curve, in which g(T, 7) is negative,
corresponds to a material particle traveling at an observed velocity less
than the speed of light. So far particles tracing out spacelike curves,
in which g(7T, T) is positive, have not been observed.

To have a coherent theory of gravity a replacement for Newton’s uni-
versal law of gravitation must be found. This is somewhat complicated in
Einstein’s theory because the g, are in fact the gravitational field. After
a great deal of hard work Einstein finally phrased his now famous system
of equations in terms of curvature and external physical fields present.

To understand the notion of curvature, start with the replacement
for straight lines in a Lorentzian manifold, its geodesics. These curves
have the property that their tangent vectors are parallel translated into
themselves along the curve. Curvature can now be interpreted as the
property of the spacetime that tells whether or not a pencil of geodesics
will focus or diverge. In particular, the Ricci curvature tells whether or
not geodesics starting orthogonal to some three-dimensinal hypersurface
will focus or diverge. Ricci curvature is a tensor of the same rank as
the Lorentzian structure, so denote Ricci by R, The distribution of
matter over the space time is given by a tensor T3, which is symmetric
in the indices @, 8. T, will change, depending on the type of matter
present. Now the Einstein equation can be stated as:

(E) Ry~ (1/2) R gos=8 T4y
in which R is the trace of R,2. This equation was derived by Hilbert
from a variational principle, at the same time as Einstein, but Hilbert
was careful to point out his debt to Einstein for intoducing him to this
problem.

The difficulty with equation (E) is that it is a quasilinear system of
hyperbolic equations in g,s and hence there are general procedures
for fining solutions. But there is nothing, at present, built into
relativity to limit solutions to (E). Each solution must be examined
and accepted or rejected on rejected on the basis of physical relevance.
Many explicit solutions of (E) are known, some having been found
almost immediately after Einstein’s formulation of the general theory.
Two solutions are of particular interest-the Schwarzschild solution and
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The Friedmann—Robertson-Walker solutions. The Schwarzschild solution
becomes the model for a local gravitational system that will eventually
form a black hole, while the FRW solutions are thought of as
cosmological solutions or solutions for the entire history of the universe:

S) ds?=— (1+c/r)de?4- (1+-¢/r) " 1dri+rido?

(FRW) ds?=dt>+f(¢)?d 23?2
in which ¢ is a constant, do? is the metric of the two-sphere, and
d>? is the metric of a three-manifold of constant curvature. The
function f£(¢) in (FRW) is calculated from (E) wusing an energy-
momentum tensor T,s for a dust cloud of galaxies. The energy
momentum tensor for (S) is assumed zero so the solution fits the
exterior of a collapsing spherically symmetric star. The functions f(z)
in (FRW) give the familiar picture of a universe, expanding from a
“big bang”. In the case of positive spatial curvature, the expansion
continues until the hypersurface has maximal volume, at which point
contraction begins, ending ultimately in a “big crunch”. In the case
of negative spatial curvature, the universe tapers-off at infinity and so
gives the appearance of freezing to death. For some time in general
relativity, it was felt that the extremes in these solutions and the
ultimate dire consequences, could be avoided in a generic unsymmetric
model. These hopes were dashed by a spectacular series of theorems by
Hawking and Penrose that launched relativity into a new era. Typical
of these facts is:
Theorem: If the value of the Ricci curvature applied to any timelike
vector is non-negative and if there is a compact spacelike hypersurface
with positive mean curvature, then the spacetime contains a timelike
geodesic whose affine parameter cannot be extended to the entire real
line.
In other words a particle in free fall along that path could veer off to
oblivion or meet an untimely end. It remains a challenge to figure out
what exactly goes wrong in this situation.

The positive mass problem is somewhat more subtle. For a metric
which is like Schwarzschid, that is, asymptotically flat, there is an
associated mass—the so-called ADM-mass, named for Arnowit, Deser
and Misner. In the case of the Schwarzschid solution the constant of
integration ¢ is the ADM-mass. The general problem is to determine
the positivity of the ADM-mass on the basis of the positivity of Ricci on
time like vectors. This was accomplished in a very beautiful way by
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Schoen and Yau. A short time later Edward Witten gave a very elegant
proof based on spinors.

2. Gauge theory

Here the situation is a little different because the fields are placed on
top of the spacetime, not woven into its fabric as in general relativity.
Maxwell’s theory of electromagnetism serves as the model from which
Yang and Mills originally based their theory, which was formulated
to explain isotopic spin. The vector potential is denoted by A and the
electromagnetic field is represented by F=dA, in which d is the
exterior derivative and as a result I is a differential 2-form. In the
case of a source—free field, Maxwell’s equation reads:

(M) OF=()
in which ¢ is the divergence operator. After some thought it was
recognized that Maxwell’s theory could be described mathematically as
a circle bundle, in which a connection had been chosen, over
spacetime. The vector potential is the connection form, explaining the
peculiar way that A transforms under change of fiber co-ordinates, and
the field is given by the curvature form.

In gencralizing these ideas to bundles with other groups, assume
that the spacetime has been replaced by a Riemannian four-manifold
M. This situation is also of interest to physicists as it means, in
quantum theory, that ordinary time, 7, has been replaced by imaginary
time, it. This has the benefit of making the Hodge star operator
casier to deal with than in the Lorentzian index. Recall that the
star operator takes a k-plane in the tangent space into the
orthogonal (4-k)-plane, suitably oriented. On bivectors, the square of
the star operator is the identity (the manifold has dimension four!).
With this background information out of the way, consider a vector
bundle E over M, in which the group acting on the fibers is SU(2).
Now provide E with a connection A, as in Maxwell’s theory, but
notice that the curvature form will reflect the non-abelian nature of
SU(2) and as a result F=dA+ANA. The Yang-Mills equation for
the connection A is then:

(YM) D¥*F=0
in which D* represents the formal adjoint of the covariant derivative
corresponding to A. A special class of solutions can be obtained by
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observing that DF=0 for any conection. This is Bianchi’s identity.
If in addition F satisfies the non-linear equation *F=F(—F) then F
is automatically a solution to (YM). Such solutions are called instantons
(anti-instantons). Assuming gauge equivalence of A to a flat connection
at infinity, which is a boundary condition at infinity, the connection
can be extended to the four-dimensional sphere.

The basic instanton on S$*=P,(H), the quaternionic projective line,
can be constructed by considering the tautological line bundle, E,. To
construct E, take the subbundle of the trivial bundle on Pi(H)
described by {([¢® ¢'], (a% a!)): (a9, al) &span (g ¢!)}. Consider the
connection on E, by pulling back the Kaehler form from P;(H ). In
inhomogeneous co-ordinates the curvature form can be represented by:

F=dz/\dz/(1+|z|%)?
in which x represents a quaternion. It is not difficult to check that the
second Chern class of E, is minus one. All of the solutions, with
Chern class minus one, can be obtained from the solution above by
quaternionic fractional linear transformations of the form:
x—> p(z—b)
in which 4 is real and & is an arbitrary quaternion.

Physically, instantons are thought to describe an aspect of the strong
force of interaction in particle physics, but it came as a great surprise
that instantons have differentiable implications for ordinary 4-dimensional
Euclidean space. S. Donaldson, in 1982, proved, using the work of
Taubes on instantous, that if the intersection form of a simply
connected 4-manifold is definite then it is diagonalizable over the
integers. Michael Freedman then put this to use in showing that R*
had more than one smooth structure. ‘

3. Quantum gravity

In this final section, a summary will be given of current work of
Candalas, Horowitz, Strominger, and Witten on an approach to
quantum gravity. In general terms a physical theory is not considered
complete until it can be “quantizd”. In the case of general relativity
this process faces insurmountable difficulties, if the standard approach
used in electrodynamics is applied. For this reason physicists have
sought a resolution of the problem by introducing new techniques. To
avoid a long discussion of basic underlying physical principles, only



36 F.]J. Flaherty

the mathematically relevant part of the treatment will be covered. The
situation comes down to considering a manifold of the form M,XK
in which M, is maximally symmetric and K is some compact 6-
dimensional manifold. These extra dimensions are thought to be small
in the sense that radius of K should be of the order of magnitude of
the Planck length. The physical assumption of the existence of what
is called an unbroken supersymmetry implies that M, must be flat and
that K have holonomy in SU(3). It follows then that K isa complex
Kaehler manifold. S.T.Yau has recently shown the existence of
spaces with SU(3) holonomy, a candidate for which is the Kummer
surface:
254 4 255=0

in P4(C). Thus Yau’s theorem tells us that the Kummer surface has a
Kaehler structure whose Ricci curvature vanishes. In addition, the
unbroken supersymmetry provides the existence of an Einstein-Hermitian
vector bundle over K. Finally, an alternate viewpoint, based on the
notion of a string, leads to similar conclusions. Normally, a particle
propogates along a timelike curve, which is a geodesic when there is
no force acting. What happens if in place of a point, a one dimensional
“string” is allowed to propogate? If the string were a spacelike curve
to begin with, it should propogate in such a way that it traces out a
timelike surface. To replace the geodesic condition for a curve, the
mean curvature vector of the surface should vanish. Such a timelike
surface would then be a maximal surface from the viewpoint of the
area functional. The details of how the string idea is applied to the
situation at hand can best be found in the work of Candalas, Horowitz,
Strominger and Witten.

It is a source of wonder that so many different ideas from differe-
ntial geometry should come to bear on the basic physics of our
universe,
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Further Reading

The basic ideas as well as the singularity theorems of general relativity can
best be found in Robert Wald’s book on General Relativity, Chicago, 1984 and
Barrett O’Neill’s book on Semi-Riemannian Geometry, New York, 1983. A
more thorough discussion of the positive mass theoremis elucidated by G. Horo-
witz in an article in Lecture Notes in Physics, V. 202, Berlin, 1984.

An excellent introduction to gauge theory is given in the Fermi lectures of
Michael Atiyah, Geometry of Yang-Mills Fields, Pisa, 1979. A discussion of
the exotic differentiable structures on R?* can be found in Michael Freedman’s ar
ticle in the Notices of the AMS, V.31, (1984), 3-6.

The summary given in part 3 comes from the paper: Vacuum configurations
for superstrings, by P. Candalas, G. Horowitz, A. Strominger and E. Witten,
in Nuclear Physics B258 (1985(, 46-74. Background material for the last section
can be best gotten from S. Kobayashi’s forthcoming book: Differential Geometry
of HolomorphicVector Bundles.
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