DOI QR코드

DOI QR Code

The study on the thermal deformation of the rotating rollers in strip continuous casting process

박판 연속 주조과정에 있어서 회전 로울러의 열변형에 관한 연구

  • 백남주 (부산대학교 공대 생산기계공학과) ;
  • 이상매 (부산대학교 대학원)
  • Published : 1987.11.01

Abstract

In this paper the solidification phenomena at the molten pool has been modeled and simulated in terms with the one dimensional unsteady-state heat transfer of the solid and molten phase and the pressure distribution in the solid phase for the twin-roller continuous casting of Sn-15% Pb. The further purpose of this study was to effectively analyze the thermal and mechanical deformation of roll applying the results of the heat transfer and the pressure distribution to the boundary conditions. The strip thickness of rapidly solidified metallic strip decreases with increasing angular velocity of the roller and with increasing initial roll gap. For this reason the roll spacing and angular velocity of the rolls are considered to be main variables. The recommended optimal casting regimes for continuous strip dimensions is near 0.8mm-1.0mm in thickness at the given angular velocity .omega.=2.0 rad/sec. Results of the experiment using Sn-15% Pb are compared with model predictions. The calculated roll deformation has been in good agreement with the observed value of roll deformatiion. All the deformation. All the deformation of the roller is within the elastic range, the plastic yielding are not occured. However, these elastic stresses are sufficient to take place of the shortened roller life by the thermal fatigue and a notch fatigue. The higher cooling rates were obtained by a twin-roller quenching technique. Also the quenched microstructure of the rapidly solidified shell was verified.

본 연구에서는 Sn-15% Pb 재료에 대하여 실험에 의한 쌍 로울식 연속 주조의 주조특성을 구하고 로울러 열팽창과 열응력에 대한 유한요소해석을 통하여 제품 두께 와 로울러 변형과의 관계를 밝히고자 한다.

Keywords