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Sensitivity Analysis for
Production Planning Problems with Backlogging™

In—Soo Lee**

ABSTRACT

This paper addresses sensitivity analysis for a deterministic multi-period production and inventory model.
The model assumes a piecewise linear cost structure, but permits backlogging of unsatisfied demand. Our
approach to sensitivity analysis here can be divided into two basic steps;(1) to find the optimal production
policy through a forward dynamic programming algorithm similar to the backward version of Zangwill (1966,
and (2) to apply the penalty network approach by the author (1986) in order to derive sensitivity ranges
for various model parameters, Computational aspects are discussed and topics of further research are sugges-
ted.

. 1. Introduction

We consider a determinisitic multi-period production and inventory model in which a single
product is produced to satisfy known market requirements over a finite planning horizon of # periods.
As in Zangwill (1966), the model permits backlogging of unsatisfied demand. Production, inventory
holding, and backlogging cost functions for individual periods are assumed to be concave so that
the overall cost functions for individual periods are assumed to be concave so that the overall cost
function is piecewise concave! The capacity of production facilities is large enough so that all require-
ments may be produced in any period. Zangwill characterized the structure of optimal production
schedules and developed an efficient dynamic programming algorithm.

In this paper, sensitivity analysis for production planning problems with backlogging is studied
under the additional assumption of piecewise linear cost stucture; re., for each period, the production
cost function consists of fixed (setup) and linear cost terms, and the inventory holding and backlogging
cost “functions are linear. An illustration is depicted in Figure 1. It is €asy to see that any linear
combination of these cost functions is a piecewise concave function.

*This paper constitutes the majority of Chapter 4 of the author’'s PhD., dissertation at UCLA.

I wish to €xpress my sincere gratitude to Professor Donald Erlenkotter for his criticism and guidance as my thesis advisor
at UCLA.

IFor definition and properies of piecewise concavity, see Zangwill (1967).
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Qur approach to sensitivity analysis here can be divided into two basic steps; (1) to find the
optimal production policy through a forward dynamic programming algorithm similar to the backward
version of Zangwill (1966), and (2) to apply the penalty network approach by the author (1986)
in order to derive sensitivity ranges for model parameters such as setup costs, unit production costs,
unit holding costs, unit stockout costs, and market requirements.

In Section 2, we formalize our production and inventory model. Section 3 reviews Zangwill's
optimization approach, and devises its forward version which is compatible with the penalty network
approach. The computational complexity of the forward version is discussed. In Section 4, we interpret
the main results of the penalty network approach in connection with sensitivity analysis for the
production and inventory model. Then, in Sections 5 and 6, we apply these results to derive the
sensitivity ranges for various model parameters that are easy to implement. Finally, topics of furt

her research are suggested in Section 7.

cost
cost
d slope = unit production cost
/' - (slope) = slope =
setup cost unit backlogging cost unit holding cost
production quantity inventory quantity
Figure 1:A Piecewise Linear Cost Structure

2. The Model

For period ¢ (;=1,--m), let 7 be the fixed market requirement and x; the production amount.
The vectors r=(#;...7,) and x={(xs, ", x») conveniently summarize a market requirement schedule
and production schedule, respectively. 7 and x are elements of R where R” is #n—dimensional
Euclidean space. It is assumed that 7, x > 0 for i=1,mn.

The inventory ; on hand at the end of period i is the total amount of production completed
through period ¢ less the total market requirements through period 7. Iy is assumed to be zero so
that

L= ; (7’h_Xh)

for i=1,-m. If I, =0, then stock is on hand or zero; otherwise, unsatisfied demand is backlogged.

It is assumed that customers are willing to wait a periods after the due date for their goods.
However, all goods must be delevered within a periods or no later than period n. o is called the
backlog limit. If & =0, no backlogging 1s permitted. If a =n—1, backlogging is without limit for
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all practical purposes since the time horizon is limited to # periods. Since all goods must be delivered

no more than o periods late,

I =— Z Yh

h=1 I a

where 7,=0 for h < 0.

Let F(x) be the total cost of following production schedule x=Cx, 0,
be the sum of production costs Pi(x;) and inventory costs Hi(I;) over periods i=
piecewise linear cost structure as shown in Figure 1, F(x) can be written as

Fo= (P +H))

where for each 7

l+ 1 1
oy =[x
and
Hy=| "
[AV §1 ’1_}1[211

if ;>0
lf Xi—

lf],’?()
if Ii <0,

). F(x) is assumed to
1,---m. With the

We shall mterpret p, as the setup cost, p, as the unit production cost, hi as the unit holding
cost, and h, as the unit backlogging cost for period i. These parameters are required to be nonnega-

tive.

In summary, a statement of the production planning problems is: Given certain fixed nonnegative

market requirements »= (r1,"*,7,), find a production schedule x= (x;, -,

overall cost function

F(X)‘ {Pz(x1)+111(11>}

subject to
I,:;; Gen—rn)
11 = = \ 2‘2-[ Yh
x>0

for i=1,,m and
1,=0

%) that minimizes the

ey

@

3

4)
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Note that 7a=0 for & < 0. There is no loss in generality in assuming that the final inventory In
is zero as in equation (5). Intuitively, this is true since there is no advantage to overproductlon

3. Zangwill’s Algorithm

Following Zangwill (1966), the set of all feasible solutions that satisfy constraints(2) —(5) can
be partitioned into disjoint subsets, called basic sets, which are characterized by whether I; is
nonnegative or negative in each of the periods 1,*,n— 1. There are 27! basic sets, all of which
are compact and convex. Since the objective function F(x) is concave on each basic set, it follows
that for a fixed basic set, F(x) attains its minimum at one of extreme points of the basic sets.
Let D be the union of all extreme points of all basic sets. D is called the dominant set. The minimum
of F(x) occurs at a point in the dominant set D. The productin schedule corresponding to a point
in the dominant set is called a dominant schedule.

A complete enumeration of all the points in D ensures finite calculation of an optimal production
schedule. However, the size of the dominant set D grows exponentially at least with rate
271 a5 the length of the planning horizon n increases. A less tedious approach has been provided
by Zangwill, who characterized the structure of the dominant set D and developed a backward dynamic
programming algorithm for efficiently (implicitly) enumerating D.

For the purpose of sensitivity analysis, we develop a forward version of Zangwill's algorithm.
In subsequent sections, we shall discuss sensitivity analysis based on this forward algorithm.

One of the characteristics of the dominant set D is that the entering inventory for any period,
say i, of a dominant schedule can be expressed in terms of an integer s as follows:’

I 1= Z = Z T Zl;) Vh. 6)

If s=i—1 or I 1=0, we know that requirements 71,"**%i—1 are exactly satisfied. If s =7 or I 1
=0, the integer s specifies that stock is on hand at the start of period i to satisfy requirements
from periods 7 to s. On the other hand, if s < i—2 or Ii-1 <0, the integer s specifies that requi-
rements from periods s to i—1 are backlogged to period i

When the entering inventory can be expressed as in equation (6), the entering inventory level
of period 7 is said to be s, or the state is said to be (i, s). State (i,s) represents the situation in
which the entering inventory level of period i is st

The entering inventory level s of period i is said to be permissible if state (7,s) insures feasibility
and prevents excess backlogging. Let Ji be the index set of permissible inventory levels for period
i. Mathematically, Ji can be defined as

2For example, if pl= p2=0 and p} =0 for i=1,-a, it could be possible to overproduce. However, this is a trivial and unintere-
sting case.

3See Theorem 1 in Zangwill [19661.

ATherefore, the state for our model consists of the stage variable (period) and the state variable s (entering inventory
level of period 7). Although both i and s for state (j, s) refer to period indices, s can be defined only with period 7.
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{0} if i=1
Ji= {{sIlmax[0, i~1—al<s<n} ifl<i=<n (7
n) if i=n+1.

A transition from state (,s)to state (7+1,t), s <f, represents the activity of producing
Zthzﬁlr;. at period 7 and storing (or backlogging if f <i—1) the amount Z,t,:i+lrh to next pe-
riod. Let Ci(s ) be the transition cost from state (i, s) to state (i+1, £). Then Ci(s #) is the
sum of production and inventory charges; that is,

t

p) 7n). (8

h o=

Cils, D=P( |3 ) +HY

Given the piecewise linear structure, the transition cost Ci(s, ¢) is expressed as the sum of

: _ [ pitpi IR —R(s)) if R(—R(s) >0
PG 2 )= {o if R()—R(s)=0 ©)
and
H( ¥ m)= [h IRO=RWD} i ¢ =i (10)
P hi{R(D—RW®} ift<i

where R(¢)= Zthzlrh represents the cumulated requirements up to (and including) period .

Another useful characteristic of the dominant set D is that if s=1i for state (i s), then x; in
the dominant schedule must be zero. In other words, if we have positive inventory on hand, we will
produce nothing. Therefore, if s > 7, it suffices to consider only the transition from state (i, s) to (;+1
s). This property saves considerable computational effort as the size of D grows.

Let Ai+1(£) be the set of transitions that result in state (i+ L. If we let arc ((,s),G+1,8)
represent the transition from state (7,s) to state G+1,8), A;+1(t) is simply the set of arcs that
are incident to node (i+1,£). Based on the definition of Ji's by equation(7), we formally define
Air1(®) as follows:

r

Case 1:

For i=1 and t€},,
A () ={(Q,0,(2,))} ¢h))

since J1={0}.
Case 2:

For 1<7<#n and t € Ji+1,any transition from state (i, s) to state (G+1,¢) can be partitioned into
four cases: s<if<i, s<i<t i<s=t and i<s <t where s€Ji. However, the transition((i,s),
(i+1,8)) with i < s < ¢ can be eliminated since if there is positive inventory on hand we will produce
nothing. Thus,

5See Theorem 2 in Zangwill [1966]).



A ={(G, 5), G+1, D)lsefis<t<is<i<t i<s=th (12)

Case 3:
Finally, for i=mn,

A1) ={((n,8),(n+1L,n)) | s € Ju} (13)

since Jn+1=1{n}.

In summary, the set of states / and the set of transitions A can be given as follows:

J= O: {G,o) | sefi (14)

and

A:,Q, {41 (D), t € Jin} (15)

where Ji and A;1(#) are defined by equations (7) and (11) —(13), respectivety. Figure 2 exemplifies
the definitions of states and transitions.

Figure 2. Transition Diagram for n=4 and a=1

Let Fi(¢) be the minimum cost from period 1 through i—1 when following an optimal production
schedule in periods 1 through i—1 such that the entering inventory level of period iis t58
Equivalently, Fi(t) is defined to be the minimum transition cost from state (1, 0) to state G 0.

6F;(f) is the optimal value function associated with state (G, #)



Graphically, if we think of Ci(s, #) as the length of arc (( 5), G+1, ), F.(f) represents the
length of the shortest path from node (1, 0) to node (i #) on the network G=(] A) where J
and A are defined by equations (14) and (15).

It is easily seen that G is an acyclic network defined by the evolution of transitions over time
(see Figure 2). Also easily seen that Fn+1(n) is the minimum of objective function(1) subject to
constraints (2) —(5). Therefore, the optimal production schedule can be obtained by solving the
shortest path from node (1,0) to node (n+1,#) on the acyclic network G=(J A).

Any shortest path algorithm now can be applied to find the value of Fu+1(n). A simple for-
ward recursion is defined as follows:

F(0) =0
F() = F(0)+Ci0,0 for te Ja
Fa@) = min {Fi(s)+Ci(s, D} for 1< i <mnand t e Ji+1

(G o), G+1, e 44,0

Fut1(1)= min {F,(s) +Ca(s, n)}.

sej,

We call recursion Zangwill’s forward algorithm in contrast with the backward algorithm in Zangwill's
paper [1966]. Both algorithms are essentially the same and equally efficient.

It is clear that the forward recursion is run in O(C | A | ) time where | A | is the number of
arcs in A Since | Al is at most ¥m3+0(n?) as shown in Proposition 1, the computational effort
for Zangwill's forward algorithm is polynomially bounded.”

Proposition 1. For G=(J, A) of Zangwill's forward algorithm,

7 :{%n(n+2a+1)—%(a—1)(a+2) if0<a<n—2

n’+1 f a=n—1

and
1 .
1A :{%nz(a+2)+g—na—ga(a+1)(a+8) fOo<a<n—2

%n(n2+3n—1) fa=n—1

Proof: It is left as an exercise for the reader.

4. The Penalty Network Approach

In this section, we review and interpret the main results of the penalty network approach proposed
by the author [1986] in connection with sensitivity analysis for the production and inventory model.

"For the motivation for determining the computatinal complexity of an algorithm, see Garey and Johnson [1979].



In oredr to exploit the penalty network approach as a post-optimality tool, we need more definitions
and notation. First, we define the penalty for transition ((% s), (k+1,t)) by

er(s, ) =Fp(s) +Cils, ) —Fet1(8) (16)

where Ci(s® is available from the cost data as in equations(8) —(10), and Fi(s) and Foi@®
are obtained by solving the shortest path problem on G= (J A) through Zangwill’s forward algorithm.

Physically, the penalty ex(s, £) measures the minimum possible regret if the transition ((, ), (B+1,
£) is to be included in a production subplan #=(x1,"*,x) such that the entering inventory level
of period k+1 is t3 It is easy to see that ex(s t)=0 if the transition ((k s),(k+1,8)) is included
in an optimal production subplan 1 =(x,"", %) where i > k.

We constuct the penalty network G, from G=(J A) by replacing Ci(s ) with ex(s #) for the
attribute of every transition ((%s), (+1,£)). An important observation is that the shortest path
from node (1,0) to node (n+1,n) on G is the same as that on G

Now, suppose there have been changes in transition costs

Ci(s, D=Ci(s, ) + Lu(s, ) an

for every transition ((%s), (k+1,£)) due to variation in the value of a model parameter. Note
that a scalar quantity Ax(s,t) may be possibly negative. We want to find the condition these
(s, 1)’s must satisfy in order for the optimal production policy to remain unchanged. This necessary
and sufficient condition is called the optimality condition on Lx(s, £)'s from which the range of
the model parameter called the sensitivity range is determined such that for any value of the parameter
in the range, the optimal policy remains unchanged.

Let V*:(t) be the minimum penalty for transition from (& ¢) to (n+1,n). The values of V*(
£)’s are available when a shortest path problem is solved on the penalty network G Obviously,
V*.(0)=0. Let G, be a perturbed penalty network that has the pseudo-penalty of ex(s, )+ 2
s {) as the attribute of each arc ((k s), (k+1, 1)) on G=(] A).

The following is a variant of the Sensitivity Theorem that is rephrased for easier interpreta-
tion -

Theorem 1. Lee [1986]. The sum of pseudo-penalties of the shortest path form node (1,0) to node
(n+1,1) on Gy is the sum of 2iCs, t)’s over the basic arcs if and only if the optimal production policy
remains unchanged

where the set of basic arcs constitutes a shortest path form node (1,0) to node (n-+1,%#) on the
original notwork G=(J, A).

Theorem 1 provides an useful logic for deriving the optimality condition on Le(s, B)’s which
then will produce sensitivity ranges for model parameters. Practical ways of finding the optimality

8A subplan £= (xy, -, x) ;125 a truncated production schedule that produces xj in period 2—1,-*,k so that the ending inve-
ntory of period k& is I= 2 (xp—7p).
h=1



condition on Ax(s, £)’s depend heavily on a given cost structure.

5. Sensitivity Ranges for Cost Parameters

In this section, we derive sensitivity ranges for cost parameters pé, pf, ki and hg, while sen-
sitivity ranges for requirements 7 will be discussed in next section.
Let s*: be the optimal entering inventory level of period % so that a path

(1, s*)—(2, s*2)—>—=>(n, s%)—=>(n+1,5%+1)
corresponds to a shortest path from node (1,0) to node (#+1,7#) on the network G=(J A). Note
that s*1=0 and s*,+1=n.
Since any change in the values for cost parameters in period £ affects only the costs of transitions

that start in period 4, Theorem 1 can be specialized to finding sensitivity ranges for cost parameters
as follows:

Proposition 2. Given a parametric change in period k,
Dr(s*, s*001) — On(s, D) < an(s, )+ V¥501() (18)

for every transition ((ks), (k+1,8)) in Ae+ 1), t<Je+1 if and only if the curvent optimal policy re-
mains unchanged.

Proof: The sum of pseudo-penalties of a path from node (1,0) to node (n+1,%) that includes
transition ((ks), (+1,#)) is no less than

er(s, )+ Ax(s, )+ V41 (D)
since the minimum penalty of a path form (1,0) to (ks) is always zero. In particular, we see
that ex(s*, s*+1)=0 and V*+1(s*%+1)=0 for the basic arc ((k s*), (¢+1,5%+1)). Hence, acco-
rding to Theorem 1, we conclude

D% % 1) < Ai(s ) Terls, )+ V*e1(p)

for every feasible transition that starts in period & if and only if the current optimal policy remains
unchanged.

The right-hand-side (RHS) of inequality (18) is obtainable by solving a shortest path problem

on the penalty network Gy On the other hand, the left-hand-side (LHS) varies over cost parameters,
but we will see that only a simple algebraic operation is needed to calculate the LHS.



5.1 Sensitivbity Ranges for Setup Costs
Let Ap! be change in the setup cost of period # such that
Pipet AP
Then, by definition, Gk(s, ) is increased by 2i(s t) By equation (9), we have

2als, t):{Af’l if R()—R(s)>0

0 if R(t)—R(s)=0
so that the LHS of inequality (18) is given by
Aptif R(s*+1) —R(s*) >0 and R(#) —R(s)=0
Orls*e % 11) =— D, t){ —Ap! if R(s*+1)—R{(s*)=0 and R() —R(s) >0
0 otherwise.
In addition, the nonnegativity of parameters in the model requires Ap! > —p}e.
Hence, depending on whether R(s*:+1) —R(s*) >0 or R(s*+1) —R(s*) =0, Proposition 2 con-

cludes

Proposition 3. If R(s*+1) —R(s*») >0, then Ap! for pi satisfies Ap! = —p} and

APt < en(s, )+ V1)

for every transition ((k, s), (k+1,))€ Ap+1(D), t € Je+1 with R(t) —R(s) =0 if and only if the optimal
policy remains unchanged.

Proposition 4. If R(s*+1) —R(s*%) =0, then Ap' for pe satisfies Ap' = —pi and
—Apt <e(s, )+ V41 (8)

for every transition ((k, ), (k+1,) E Arr1(D), t € Jor1 with R(O) —R(s) > 0 if and only if the optimal
policy remains unchanged.

These propositions imply-:

Corollary 2. If the optimal policy is to make products in period k>1, the sensitivity range for the setup
cost in period k has an upper bound; otherwise, a lower bound.



If k= 1 and a=1, Corollary 2 is still valid; however, for =1 and a=0, the setup cost for period
1 can be arbitrarily increased.

5.2 Sensitivity Ranges for Production Costs

Let Ap? be a change in the unit production cost of period & such that
Pyt A

By equation (9), we have
2a(s, =02 (R —R(s)}

The LHS of inequality (18) is given by
Ar(s*e, s%r1) — Oi(s, 1) :Apz{ [R(s*+1) —R(s*)}—{R(t) —R(}}

so that Proposition 2 concludes
Proposition 5. Ap?for p? satisfies A p?>—p* and
AP {R(s*e+1) —R(s*) } — R —R()} <e, (s )+ V(D)

for every transition ((k, s), (k+1, 1)) € Awni(), tE Jur1 if and only if the optimal policy remains
unchanged.

5.3 Sensitivity Ranges for Holding Costs

Let Ah! be a change in the unit holding cost of period % such that

h—hl+ bt

Since Ah! affects Ci(s, 1) only if there is positive inventory at the start of period k+1, it follows
from equation (10) that

_ fARHR —RBY if i>k
Auls D= {o if t<k.
Note that Ax(s, ¢) caused by Ah! does not depend on s. The LHS of inequality (18) now can
be expressed as follows:

ARR(s*+1) — R} if s*+1>k and t>k
AW R(Gs* 1) — R} if s*+1>k and t<k
AR —R(D}  if s*+1<k and >k
0 if s*»+1<<k and t<k

Dr(s*e, s*+1) — Lu(s, =



Hence, depending on whether s*;+1>k or s*:+1<k, Proposition 2 concludes
Proposition 6. If s*:+1 >k, Oh! for h} satisfies Ah!>—hi,

ARHR(s* 1) — RO <e(s, )+ V*%41(8)
for every transition ((k, s), (b+1, )€ Ar+1(8), t€ Jr+1 with t>k and
ARHR(s* 1) —R(B) Y=en(s, 1) +V* 0 1(p)

for every transition((k, s), (k+1, ) €Ar+1(), tE Jo+1 with t <k if and only if the optimal policy
remains unchanged.
Proposition 7. If s*x11<k Oh! for hi satisfies ONh=—h and

AR R(E) —R(D Y =els 1)+ V1 (8)

for every tramsition ((k, s), (k+1, D)€ Ar1(t), t € Jor1 with t>k if and only if the optimal policy
remains unchanged.

Obviously, the inventory holding cost for period » can be increased arbitrarily since I,=0.

5.4 Sensitivity Ranges for Backlogging Costs

Let Ah? be a change in the unit backlogging cost of period %2 such that
W=+ AW
4 k

Since Ah? affects Ci(s, £) only if requirement 7. is backlogged, the resulting change A (s, ) is
given by

(0 if >k
AV1ES t)~{Ah2{R(k) —R(D} if {<k

Thus, as in the case of holding costs, the LHS of inequality (18) can be expressed as:

0 if s*tr1 >k and t > k&
ARR(E) —R(R)} if s*+1 =4k and t <k
ARR(E) —R(s*t+1)}  if sp+1 <k and t =k
ARR(E) ~ R(s*,+ 1)} if skv1 <k and t < k

Ar(s*, se™1) — A(s, )=

Hence, depending on whether s*:+1=k, or s*.+1<k Proposition 2 concludes

Proposition 8. If s*:+1=k, then /K for W satisfies [Nh2=—he and



AR —R(B)) <enls, O+ V¥ 1P

for every transition ((k, s), (k+1, D)), t & Jour with t<k if and only if the optimal policy remains
unchanged.

Proposition 9. If s*w+1<k, then AR? for h% satisfies AW =>—h
ARG —R(s*s D <erls, ) +V4%i1(d)

for every transition ((k, ), (k+1, 1)), t € Juv1 with t=k and
AR —R(s*+ Dlser(s B +V¥%+1(0

Jor every transition((k, $)(k+1, 1)), t € Jor1 with t <k if and only if the optimal policy remains
unchanged.

Note that Propositions 8 and 9 are relevant only when a=1. When a =0, no backlogging is permitted,
and the backlogging cost is of no consequence.

6. Sensitivity Ranges for Market Requirements

Let A7 be change in requirement 7 such that

et A

We wish to find sensitivity ranges for requirements in individual periods.

O for vy affects “transition” costs whenever they involve the activity of producing, storing, or
backlogging 7. Specifically,
Case 1: When 7.+ A7 is produced and stored in period 7 (e, ¢ < k and s <k<t), we have

Ails, ) =pH8(R(t) —R(s) + £7) —8(R(t) —R(s) )} + Ar(p2+h).
Case 2: When 7+ A7 which was produced earlier than in period i, is carried over to period
it1 (e, i<k and k<s=t), we have A(s t)=Ar hi

Case 3 :When 7+ Ar, which has been backlogged until period 7, is produced in period ¢

(ie, k<i<k+a and s<k<t), we have A(s, D—Drp?



Case 4: When n+ Ar is backlogged to period i+1 (ie, k<i<k+a and s<t<k), we have
Ails, ) =p8(RW) —R(s) + Ar) —=8(R() —R(s)) } + v b?
Case 5: Otherwise, we have A,(s, £)=0.
For notational convenience, we define
8k (s, t, Ar) =3(RM) —R(s)+ L1 —8(RE) —R(s))
where 7, + Ar=0. Possible values of this function are 1, —1, and 0 as given below:

1if R(H)—R(s)=0 and Ar>0
8k(s, &, &)= (—1if R®)—R(s)=rn>0 and Ar=—n,
0 otherwise

by the definition of 8-function. For computational purposes, we may assume that (1) 8(s t A »)
=1 when R(#)—R(s)=0 since Ar=0 is a trivial case, and (2) &s, ¢ Ar)=0 when R(t) —R
(s)=7>0 since we may check later on if A»= —#, violates the inequalities that yield the sensiti-
vity range for 7

Using the transition diagram in Figure 2, we illustrate the behavior of A(s, ¢); for example,
due to A7 for 73 Cp(1, 4) is increased by (1, 4)=p382(1, 4, AY) +Ar (p4+h)) and Co( 3,
3) by 23, =47 hs.

We shall calculate how much the total penalty for a given policy is affected by Ar for 7. It is
sufficient to keep track of the transition that involves the activity of producing r,+ Avr.

Let U(k i) be the marginal cost of supplying one unit of 7. from period 7 (in addition to the
setup cost p!) such that

Uk, )= { v ifi=k

If i<k and s<k<t, the total pseudo-penalty for any policy that includes transition (Ci,9), G+1,
£)) would be no less than

lei(s, D+ 26 D@ D+ o1l DI Hle 1 D+ 21l DHVRG (1)

since the minimum penalty from state (1, 0) to state (z, s) is zero, and if there is positive inventory
on hand we will produce nothing. The expression (19) is simplified to

Prou(s, ¢ Ar) +ovUk, 1) +els, )+ Vi (8) (20



using the definition of U(k, i) and the fact that
Vi) =eir1(t, )+ +er—1(t )+ V4.

Similarly, if k<i<k+a and s <k<t the total pseudo-penalty for any policy that includes transition
(G, s), G+1, ) would be no less than

A QIR VAT (EINEID |5 PAVET (EINEID B NN QR M+ Hels, D+ A, DI+ V@) (21)
where the dots( + ) signify inventory levels. The expression (21) is simplified to
P& (s £ o) + AU ) +ei(s, )+ V() (22)
using the definition of U(k, 7) and the fact that the minimum penalty from state (1, 0) to state
(i, s) is zero.
Suppose the optimal production policy supplies 7 from period j. Then s*<k<s*;+1. Since the
total penalty for the optimal policy is zero, its total pseudo-penalty can be given by

D16:(s¥, s*iv1, AP+ 200U AUk, )

which must be smaller than the total pseudo-penalty for any other policy according to Theorem
1. Hence the sensitivity range for the requirement in period £ can be obtained as follows:

Proposition 10. Suppose s*i<k<s*+1 .Then Ay for ne satisfies Ay >—r: and
AUk = Uk, D<eils, O+ V¥51(t) = pioe(s*; s%11, AP +ploels, £ A7)

for every transition ((i s), (i+1, 1)) € A;j+1(t) such that i <k+a, i+ j, and s<k<t if and only if

the optimal policy remains unchanged.

Proof : The proof follows from expressions (20) and (22); the definitions of 84(s, £, A7) and
U (k ©); finally, Theorem 1.

7. Conclusion

Based on the forward version of Zangwill's algorithm and the penalty network approach, we developed
sensitivity analysis for deterministic production planning problems with infinite capacities and backlog-
ging. For a complete implementation with PASCAL program, refer to the author’'s Ph.D. dissertation
which is available upon request.

A next step would be to extend the sensitivity analysis to the case of ‘constant capacities’ for
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which Florian and Klein [1971] devised an O(»?) algorithm. Another interesting direction would
be to extend the sensitivity analysis to the case of ‘upper bounds on inventory’ for which Love
[1973] developed O(#?) algorithm. These two algorithms essentially arc shortest path algorithms
once are costs are evaluated.
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