Effects of Na2O Content on Characteristics of $\beta$-Al2O3

$\beta$-Al2O3의 특성에 미치는 Na2O의 영향

  • Published : 1987.01.01

Abstract

Physical and electrical properties of ${\beta}$-Al2O3 were investigated as function of Na2O content from 6.67 wt.% to 13.19 wt.%. The majority phase is ${\beta}$-Al2O3 and the small amount of ${\beta}$"-Al2O3 exists in the specimens sintered at 1600$^{\circ}$for 30 mins. In the case of specimens with 8.54 wt.% Na2O sintered at 1600$^{\circ}C$, the relative amount of ${\beta}$-Al2O3 phase increases and that of ${\beta}$"-Al2O3 phase decreases with increasing sintering time, and then ${\beta}$"-Al2O3 phase does not exist if sintering time is over 8 hrs. As the Na2O content is increased, the 3-Point MOR and the resistivity are decreased. However, density and 3-Point MOR with increasing sintering time are decreased due to increasing the enclosed pore trapped inside of the exaggerated grains. As the sintering time is increased, the average grain size and the duplexity of microstructure are increased, and the resistivity is slightly decreased.

Keywords

References

  1. Soc. Automat. Eng. Trans. v.76 no.1 A Sodium-Sulfur Secondary Battery J. T. Kummer;N. Weber
  2. Prograss in Solid State Chemistry v.7 β-Alumina Electrolytes J. T. Kummer;H. Reiss(ed.);J. O. McCaldin(ed.)
  3. J. Inorg. Nucl. Chem. v.29 no.2453 Ion Exchange Properties and Rates of Ionic Diffusion in β-Alumina Y. F. Yao;J. T. Kummer
  4. Bull. Chem. Soc. Jpn. v.41 no.93 On the Structures of Alkali Polyaluminates G. Yamaguchi;K. Suzuki
  5. Energy Convers. v.14 no.1 A Thermoelectric Device Based on Beta-Alumina Solid Electrolyte Energy Conversion N. Weber
  6. Mat. Sci. Monog. v.6 no.964 Solution spray-dried and Freeze-dried Sodium Beta-Alumina Powders: Preparation and Hot Pressing D. J. Green;S. Hutchison
  7. Z. Krist v.97 no.59 The Crystal Structure of Beta-Alumina, $Na_2O · IIAI_2O_3$ C. A. Beevers;M. A. S. Ross
  8. Acta. Crystallogr. v.B27 no.1826 Refinement of the Structure of Sodium β-Alumina C. R. Peters;M. Bettman;J. W. Moore;M. D. Click
  9. J. Solid State Chem. v.4 no.60 Stoichiometry and Structure of the Super Ionic Conductor Silver Beta-Alumina W. L. Roth
  10. Mat. Res. Bull. v.14 no.185 NMR Study of Sodium Oxide Enriched Beta-Alumina R. R. Dubin;H. S. Story;R. W. Powers;W. C. Bailey
  11. Quantitative Stereology E. E. Underwood
  12. J. Kor. Cer. Soc. v.23 no.1 Preparation and Electrical conductivity of $β-Al_2O_3$ H. I. Song;E. S. Kim;K. H. Yoon
  13. J. Am. Cer. Soc. v.66 no.166 Kinetics of the β" to β-transformation in the System $Na_2O · AI_2O_3$ J. D. Hodge
  14. Jpn. J. Appl. Phys. v.11 no.180 Ionic Conduction of Impurity Doped β-alumina Ceramics A. Imai;M. Harata
  15. J. Electrochem. Soc. v.122 no.226 An Analysis of the Impedance of Polycrystalline Beta-alumina R. W. Powders;S. P. Mitoff
  16. J. Am. Cer. Soc. v.57 no.497 Relation of Properties to Microstructure in a β-alumina Ceramics T. J. Whalen;G. J. Tennenhouse;C. Meyer
  17. Ceramic Microstructures '76 Evolution of Microstructure and Properties in Lithia-Stabilized Polycrystalline β-alumina A. V. Virkar;R. S. Gorden;R. M. Fulrath(ed.);J. A. Pask(ed.)
  18. Ceram. Bull. v.58 no.849 Preparation of $β”-Al_2O_3$ Pressing Powders by Spray Drying D. W. Johnson, JR.;S. M. Granstaff, JR.;W. W. Rhodes