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On Simultaneous Considerations of Variable

Selection and Detection of Influential Cases”

Byoung Jin Ahn* and Sung Hyun Park**

ABSTRACT

The values of statistics used for variable selection criteria can ke reduced remarkably
by excluding only a few influential cases. Furthermore, different subsets of regressors
change leverage and influence patterns for the same response variable. Based on these
motivations, this paper suggests a procedure which coniders variable selection and
detection of influential cases simultaneously.

1. Introduction

The problem of selecting a subset of predictor variables is usually described in an
idealized setting. That is, it is assumed that the analyst has “good” data at hand from
which to draw the eventual conclusion. In practice, the lack of satisfaction of this assu-
mption may render a detailed subset selection analysis a meaningless exercise. Variables
that look important or, conversely, appear to be of little value based on standard indic-
ators may, in fact, appear so because of only a few influential observations or outliers.
Furthermore, different subsets of predictor variables drastically change leverage and
influence patterns for the same response variable. For these reasons, it seems necessary
that variable elimination be considered with case influence simultaneously.

Consider the following full rank linear model with # cases, given by
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y=Xp+X:B:+e, (1.1
where y is nx1, X is nxp, X.is nxq, fis px1, B is gx1, E(e)=0, and Cov(e)
=¢2]. Alternatively, we will consider a fixed subset model of the form

y=Xp+a. (1.2)

In general, (1.2) will provide biased estimates of E(y), but, as is well known, it

may smaller mean squared error than (1.1) for estimating expected values of y. See
Hocking (1974).

Let V=(u:;;))=X(X’'X) ! X' be the orthogonal projection onto the column space of

X, and define U to be the orthogonal projection onto the column space of (X, X,), i.e.,

U= (u:) = (X Xz)<X'X X' X, >’< X )

XX X)X, X'

It is convenient here to apply a linear transformation to X, so that the variables not

(1.3

in the subset model are orthogonal to those included in the subset. To this end, define

Z=I-VX, 1.4
which is the projection of X, onto the orthogonal complement of X. The full model
(1.1) can then be rewritten as

y=XB+Zr+e. (1.5)
The results in this paper are derived using (1.5) in place of (1.1). In practice, how-
ever, the transformation need not be computed. Suppose we let Ve=Z(Z'Z)Z', then
one can show that U= V+ Ve, From this fact, we can obtain the same value of ¥
through either (1.1) or (1.5).

The fitted value for the i-th case for the subset model is denoted by yp,i:xiﬁ and
for the full model by #;=x.'f--2/'7, where x;' and 2z;’ are the i-th rows of X and Z,
respectively.

Because of the orthogonalization, the least squares estimator, B=(X'X)"' Xy, will be
the same for the models (1.2) and (1.5). The mean squared error of %, is given by
MSE (55,) =E (35— E(¥))*

=v;02+ (272 (1.6)

We will propose and discuss a weighted sum of mean squared errors(WMSE) as a
criterion of variable selection in Section 2. In Section 3, a numerical example is shown
to demonstrate the procedure discussed in Section 2, In Section 4, concluding remarks

are mentioned briefly.
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2. Case Weighting for Variable Selection Criteria

One good criterion to check “closeness” of %, to y which has been used by many

authors is the integrated mean squared error:
Q={=MSE (5,)dW @1)

where R is the region of interest and W is the weight function in the region R.
Since E(y)=x'8+2'7
and
MSE(3,)=x'(X'X) " xo?+ (2'7)?,
the integrated mean squared error @ becomes
Q=0tr[(X'X) M, ]+7'M,.y (2.2)

where Mpngkxx’dW and M,,=ngz’dW. See Park(1977).

If relative importance is imposed on the data points by letting W(.)=w; at the data
points and W(-)=0 elsewhere, then M,,=X' WX and M.,=Z'WZ where W=diag(w,,
Wy, +++, wa). The w;'s are case weights which reflect relative importance.

For this particular case, we obtain

WMSE=c*tr[( X' X)X WX]+1'Z' WZy
2024? Wi+ ; wi(2:'7)*?

= ; w:MSE (3,,:). 2.3)

Hence, if relative importance is imposed on the data points, the integrated mean
squared error becomes a weighted sum of mean squared errors ( WMSE) at the data
points.

Many of subset selection criteria are simple functions of the residual sum of squares
for the subset model (1.2) (RSS,). If we assign some weights w; for each case, we
can obtain the following weighted RSS, as an estimator of WMSE,

WRSS,,:; Wi (Yi—Fp)?

=3 wie,); , (2.4)

where-e,,; is the -th residual for the subset model.
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In the following, we show that some well known selection criteria are particular
cases of WRSS,.
@ If wi=1/m—p) for all i,
WRSS,= ,-Ze‘” 2/ (n—p) =RMS,,

which is equal to the residual mean of squares for the subset model.

Gi) If w;=1/TSS {for all i where TSS is total sum of squares, (1—WRSS,) is
equivalent to the squared multiple correlation coefficient R,

(i) I w:=m+p)/[n(n—p)Ifor all i, WRSS, is equivalent to the average prediction
variance J, See Hocking(1972).

(iv) If wi=1/[(n—p) (n—p—1)] for all 7, WRSS, is equivalent to the average predi-
ction mean squared error S,. See Tukey(1967).

V) If wi=ep,: (i) /s :i=1/(1~0:1) where e,,; (i) is the i-th predicted residual from
the subset model fitted to the data with the i-th case excluded, WRSS, is equiv-
alent to the standardized residual sum of squares RSS,*. See Schmidt(1973).

i) If wi=epd(0) /eni=1(1—0:)% WRSS, is equivalent to PRESS,. See Allen(1974)

The weighted RSS, is a biased estimator of WMSE since

E(WRSS,) — WMSE =o%r(W(I—2V)). (2.5)

An unbiased estimator of WMSE in (2.3) can be obtained by replacing MSE (#,,:)

with an unbiased estimator C,,::
WC,=}; w;Ch (2.6)

where C,,:= (z:/ %)+ (2v:;;—u::) 8 and 6% is the residual mean of squares for the full

model.
If w; is equal to one for all i, WC,/*% is just the Mallows’s C, statistic, which is

given by
Cp:RSSp/6'2+2p—n, (2. 7)
since Z(z"f’)zzRSSr-(n—p—q)&Z, Y vu=tr(V)=p, and X uu=tr (U)=p+q.

The idea of weighting cases to lessen the case influence of a few influential observa-
tions seems natural, but the problem how to determine the case weights which are
efficient in downweighting outliers or high leverage points is not simple. Subsequently,

we will consider the problem of determining case weights.

Suppose that the i-th case is suspected to be an outlier in a subset model. A useful



14 Byoung Jin Ahn and Sung Hyun Park

framework used to study outliers is the mean shift outlier model (See, for example,
Cook and Weisberg (1982). ),
y=XB+d:a+te, (2.8)
where d; is an n-vector with 7-th element equal to one, and all other elements equal
to zero. Non-zero values of @ imply the i-th case is an outlier. The least squares esti-
mator of a is
a=d';(I-V)y/d: (I-V)d;

=€p,:/(1—0:i). (2.9)
The extra sum of squares due to fitting @ in the model (2,8), is given by
R i=e, 2/ (1—vi). (2.10)

This statistic measures the effect of outlier and is the special ;case of the statistic @

discussed by John and Draper (1978).

Note that
E(Ry)=E (e, [/ (1—vi)
=0+ (2:'7)*/ (1~va). (2.11)
The above motivations may lead to consider the following case weights given by
w.-:{ C if Ry:i/a*<h(p) (2.12)
Ch(p)6*/R,,; otherwise,

where C is an appropriate constant and h(p) is a function of p.

Now, we are to decide the function of A( p). Hoaglin ‘and Welsch (1978) determined
high-leverage points by looking at the diagonal elements of projection matrix V and
paying particular attention to data points which have v,,>2p/n. For this reason, we
make take the function of %(p) as described in (2.13) by replacing v:; and (2/7)? in
(2.11) with 2p/n and max(y:—¥,:)% respectively.

h(p) =1+nMax (y:—5,,:)%/6*(n—2p). (2.13)

The deletion of a case corresponding to an outlier in ¥ will tend to result in a marked
reduction in the residual sum of squares. The residual sum of squares, therefore, is a
diagnostic measure for detecting influential cases arising because of an outlier iny, So,
we may determine the case weights which are different from (2. 12) as

w;=C RSS,()/RSS,, (2.14)
where C is an appropriate constant and RSS, () is the residual sum of squares with

i-th case deleted.
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These case weights provide the analyst with valuable information about the influence

patterns of various subset models.

3. A Numerical Example

We will apply the procedure discussed in this paper to a specific real data set prese-
nted in Weisberg (1981). The data are given in Table 3.1, Suppose that finding a
linear model based on a subset of the predictors and at the same time detecting influe-
ntial cases are of interest. The measured variables are:

Y=Ilog (oxygen demand, mg oxygen per minute)
X,=biological oxygen demand, mg/liter

X,=total Kjeldahl nitrogen, mg/liter

X, =total solids, mg/liter

X,=total volative solids, a component of X;, mg/liter

X;=chemical oxygen demand, mg/liter

Table 3.1 Data from oxygen uptake experiment(Weisberg (1981))

Case X, X, X; X, X5 Y
1 1125 232 7160 85.9 8905 1. 5563
2 920 268 8804 86.5 7388 0. 8976
3 835 271 8108 85.2 5348 0.7482
4 1000 237 6370 83.8 8056 0.7160
5 1150 192 6441 82.1 6960 0. 3130
6 990 202 5154 79.2 5690 ¢. 3617
7 840 184 5896 81.2 6932 0.1139
8 650 200 5336 80.6 5400 0.1139
9 640 180 5041 78.4 3177 —0. 2218
10 583 165 5012 79.3 4461 —0. 1549
11 570 151 4825 78.7 3901 0. 0000
12 570 171 4391 78.0 5002 0. 0000
13 510 243 4320 72.3 4665 —0. 0969
14 555 147 3709 74.9 4642 —0. 2218
15 460 286 3969 74.4 4840 —0. 3979
16 275 198 3558 72.5 4479 —0.1549
17 510 196 4361 57.7 4200 -0.2218
18 165 210 3301 71.8 3410 —0.3979
19 244 327 2964 72.5 3360 —0.5229
20 79 334 2777 71.9 2599 —0. 0458
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Table 3.2 Cases with values of w:<C0.8 in (2.12)

Selected Cases
Variables 1 23456 789 1011 12 13 14 15 16 17 18 19 20
(1) .56
(2) | .48
3) .22
“) .57 .57
(5)
(1,2) .44
1,3) .27 .63
(1,4) .48
(1,5) . 80
(2,3) .24
2,4) .72 .62
(2,5)
(3,4) .26
(3,5) .21 .67 .31
4,5) | .59
(1,2,3) .24
(1,2,4) | .38
(1,2,5) .52
1,34 | -33
1,3,5) .22 .67 .76
(1,4,5) | .57
(2,3,4) .25
2,35) .21 .75 .53 .38
(2,4,5) .53 .68 .59
(3,4,5) .20 .62 .31
(1,2,3,4) .29
(1,2,3,5) .22 .79 .56 .41
(1,2,4,5) .44 .67 .71
(1,3,4,5) .20 .59 .32
(2,3,4,5) .15 .51 .36 .28
(1,2,3,4,5) .14 .50 .36 .28
e { 1 if Ryi/0°<h(D)
h(p)62/R,,: otherwise. (2.12)

Tables 3.2 and 3.3 list the cases with relatively small values of w; which are derived
from the equations (2.12) and (2.14), respectively. These tables exhibit the following
facts. First, the influence patterns could be changed as the selected variables vary.
Second, the results from Tables 3.2 and 3.3 are similar. Finally, cases 1, 17, and 20

could be influential cases or outliers.
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Table 3.3 Cases with values of w:<<0.8 in (2.14)
Selected Cases
Variables 1 2 3 456 7 89 10 11 12 13 14 15 16 17 18 19 20
(1 .61
(2) . 56
3 .41
) .57 .56
(5) L7777
(1,2) .61
(1,3) .43 76
(1,4) .58
(1, 5) .72 .79 .75
(2,3) .40
(2,4) .57 .50
(2,5) .79
(3,4) .41
(3,5) .52 .67
(4,5) .71
(1,23 .44
(1,2,4) .58
(1,2,5) . 69
(1,3,4) .43 .77
1,3,5 .52 .68
(1,4,5) .68 .79 .76
(2,3,4) .40
(2,3,5) .52 .73
(2,4,5) .72
(3,4,5) .52 .68
1,2,3,4) .44
1,2,3,5) .52 .73
(1,2,4,5) .66 .79
(1,3,4,5) .52 .69
(2,3,4,5) .51 .75
(1,2,3,4,5) .51 .75
**ky = RSS, (1) /RSS,. (2.14)

Chatterijee and Hadi (1986) applied some diagnostic measures to the same data set

given in Table 3.1 and they came to the similar cncolusion that observation numbers

1,7,15,17, and 20 are influential either individually or in groups.
In Table 3.4, the values of WMSE criteria, RMSP,, and C, are listed. The criteria
C,, C, denote the WRSS, in (2.4) with the case weights given in (2.12) and (2.14),

respectively. The criteria C;, C, denote WC, in (2.6) with the case weights given in
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Table 3.4 The values of criteria in the subset models

Selected Variables C, C, C, C, RMS, C,
¢} 0. 089 0. 086 12.63 11. 863 0.112 12.999
(2) 0. 205 0. 208 51.274 49. 261 0. 280 56. 764
3) 0. 048 0. 054 5. 162 5.242 0. 086 6. 321
(4) 0. 098 0.098 16. 483 16. 071 0.139 20. 242
(5) 0.078 0. 070 6.471 5. 554 0. 086 6.471
(1,2) 0. 067 0. 067 8.443 7.993 0. 092 8.637
(1,3) 0. 045 0. 051 5. 905 5.992 0. 085 6.743
(1,4) 0. 072 0. 074 10. 567 10. 102 0.102 10. 955
1, 5) 0.071 0. 065 7.372 6. 642 0. 087 7.486
2,3 0. 047 0. 052 6. 350 6. 290 0. 087 7.301
(2,4) 0. 102 0. 091 18. 043 16. 459 0. 144 21. 311
(2,5) 0. 072 0. 065 6. 807 5.994 0. 084 6. 808
(3,4) 0. 048 0. 052 6. 264 6.181 0. 086 7.173
(3,5) 0. 031 0. 042 1. 192* 1.410*  0.064 1. 709*
(4,5) 0. 061 0. 060 4. 988 4. 608 0.078 5.178
1,2,3) 0. 043 0. 047 5.582 5.493 0. 078 6. 067
(1,2,4) 0. 057 0. 059 7.954 7.612 0. 088 8.316
(1,2,5) 0. 056 0. 056 6. 036 5.746 0. 079 6.272
(1,3,4) 0.048 0. 050 7.386 7.226 0. 087 8. 022
(1,3,5) 0. 032 0. 042 2. 992 3.126 0. 067 3.490
(1,4, 5) 0. 059 0. 058 6. 669 6. 323 0. 082 7. 008
(2,3,4) 0. 045 0. 050 7.376 7. 142 0. 088 8. 200
(2,3,5) 0.030 0. 040 1.719 1.983 0. 062* 2.326
(2,4,5) 0.053 0. 054 4. 860 4.879 0.076 5. 609
(3,4,5) 0. 030 0. 041 2.894 3.084 0. 067 3.389
(1,2,3,4) 0.043 0. 046 7.155 6. 896 0. 081 7. 520
(1,2,3,5) 0. 031 0. 040 3.722 3.888 0. 066 4.317
(1,2, 4,5) 0. 049 0. 050 6. 056 5.972 0.077 6. 599
(1,3,4,5) 0. 030 0. 041 4.617 4.733 0. 069 5.121
(2,3,4,5) 0. 025* 0. 039* 3.234 3.589 0. 065 4.002
(1,2,3,4,5) 0. 025* 0. 039* 5.150 5. 499 0. 069 6. 000

(2.12) and (2.14), respectively. The symbol “*' in Table 3.4 denotes the minimum
value of each criterion.

Table 3.4 exhibits some interesting facts that C,, C,, and C,result in the same concl-
usion and that C,,C,, and RMS, lead to different conclusions. It may be so because
the WMSE criteria C; and C, are derived from the weighted sum of estimators of
MSE(3,,:), the WMSE criteria C, and C, are derived from that of e, and the case
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weights in (2.12) and (2.14) are designed to downweight the cases with large residuals.
It seems that the WMSE criteria C; and C, are more suitable than the WMSE criteria
C, and C, as variable selection criteria. Table 3.4 also shows that the subset (X;, X5)

or (X, X;, X;) seems desirable for regressors.

4. Concluding Remarks

A question may be raised whether the procedure presented in this paper is more fav-

orable compared to the following two-step approaches which are used in practice.

Step 1. First, clean the data set by applying some detection rule for infuential cases

or outliers.

Step 2. Then, use some variable selection procedure on the remaining cases.

The procedure proposed in this paper which considers the variable selection and

detection of influential cases simultaneously may have some following advantages:

(1) The majority of the users who are far from being expert statisticians often run
package programs for variable selection directly without Step 1, In the presence of
outliers or influential cases, they may face some peculiar results that are difficult to
understand. However, the proposed procedure could provide better results for the
users to understand.

(2) In multiparameter regression problems outliers are not easily recognized. Even if
we apply some detection rule for full data set, it is difficult to adopt case influence
to variable selection procedure because different subsets of regressors change the
influence patterns for the same response variable. However, the proposed method
overcome such problems.

(3) The WMSE estimators are resistant to some influential cases. However, they lead
to similar conclusion with usual variable selection criteria if the data set does not
contain influential cases or outliers. Furthermore, the WMSE estimators may give
more information than the two-step approaches, because they can make a smooth
transition between full acceptance and full rejection of an observation by giving

weights between 0 and 1.
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