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ABSTRACT

The linear and quadratic log contrast model with mixtures on the strictly positive
simplex,

X; 1 ..
;{4‘1:{(::,, e X)L Dx=1 and EngT for all z,]},
J
are considered, Using the invariance arguments, symmetric D-optimal designs are
investigated. The class of symmetric D-optimal designs for the linear log contrasts
model is given. Any D-optimal design for the quadratic log contrast model is shown to
be supported by a subset of all the extreme points and the center point in ¥,.,

metric D-optimal designs for g=3 and 4 cases are given,

. Sym-

1. Introduction

In experiments with mixtures, the response depends only on the proportions of the
g components present in the mixture and not on the total amount of mixtures. The

q components are all represented by a proportion, x;, of the total mixture, Thus

q
3hx=1land 0<a; <2, < b <1,

i=1

where {=1,---,q and the ; and b; are constraints on the x; imposed by the experimenter,
There are situations where only mixtures consisting of all components simultaneously

are meaningful. The designs then consist only of the interior points of the simplex.

Examples are the formulation of a certain bleach for the removal of ink dyes and manu-

facture of one particular type of flare. Recently, Aitchison and Bacon-Shone(1984)
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introduced the linear and quadratic log contrast model,

1o () =ot-3 s log(xi/x.) (L1
and
Te() = a3 By Nog (xa/ )+ 323 B log (/) log(xi/xs) (1.2

on the strictly positive simplex, i.e. 0<a;<x;<<b;<<1, i=1,--,q. The log contrasts
models, (1.1) and (1.2), allow consideration of the hypothesis of inactivity of any
components and complete additivity of every possible partition of the ¢ components. For
further details, see Aitchison and Bacon-Shone(1984).

In this paper, we restrict consideration to the approximate design theory, The present
interest is to find a symmetric D-optimal design for the linear and quadratic log contrast

model on
Yot ={ (11, 5)  Ex=1 and d= 2<% for all i.i}, (1.3)

where the fixed constant ¢ is in(0,1).

Section 2 is devoted to the formulation of general design problem and the invariance
theorem [Kiefer(1959), (1961)]. In section 3, the invariance theorem is applied to the
log contrast models. Chan(1986) found a D-optimal design for linear log contrast model
on y,.; by brutal methods. Using the invariance theorem, we then simplify arguments
to find symmetric D-optimal designs for the linear log contrast model in section 4,
Section 5 deals with the quadratic log contrast model, It is shown that the support of
any D-optimum design is a subset of extreme points and the center point in y,_,.
Symmetric D-optimal designs are shown for ¢=3 and ¢=4 cases. Similar arguments

may hold for general g, but the computation will be very complicated,

2. Preliminaries

Let x'=(xy,---,%,). It is assumed that for each x in %q¢-1, @ random variable or response
Y(x) can be observed. The response Y (x) has expected value
EY(x)=X0:f,=0'f(x)
and
Var Y(x)=0¢?,

where f(x) is a pX 1 column vector of known functions fi(x), i=1,--,p andfis a px1
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vector of unknown parameters,
A design & is an arbitrary probability measure on Y1 and the information matrix of
a design £ is

ME)= | f(x)f(x)'dE().

Yg1
&* is a D-optimal design iff \M(&*)l:m?xIM(E)l,

The D-optimality criterion is known, by the celebrated Kiefer-Wolfowitz theorem, to
be equivalent to the G-optimality criterion.

Theorem 2.1. [Kiefer and Wolfowitz(1960)]. The following assertions:

(1) the design &* maximizes | M(&) |

(2) the design &* minimizes max d(x,&), where d(x,§) =f(x)' M 1(&) f(x)
(3) max d(x,§)=p

are equivalent,

In many regression problems, the regression functions f(x) are appropriately symmetricm
with respect to a group of one-to-one transformations G of yg_; onto yg.;. The followingA
invariance theorem [Kiefer (1959), (1961)] concludes that there exists a symmetric )
D-optimal design for those models, T S S,

Theorem 2. 2. Suppose G is a group of transformation on ¥, such that for each g
in G, there exists a pxp matrix A, of determinant 1 or —1 such that

Flgx)=A.f(x), for any x&yg.1.
Then there exists an invariant(or symmetric) D-optimal design under G. If &% is D-

optimal and G is finite, then 5*:_}:_2 £.* is an invariant D-optimal design, where
ge6G

£, (B)=£(g™B) and L is the number of elements in G.
3. Invariance

For the convenience of notation, we sometimes represent x in y,_; by 7 in the sense

that #'=(ry, -, 74), #:=>0, 1s equivalent to 1 == (%, v, %) with xi:ri/Zq] 75, 1=1,.q.
1

Let E;, 0<i<<q—1 be the set of (CZI) points in %..; with exactly i components of » equal

to 1 and g—i components equal to 4. From (1.3), it can be easily checked that ¥, is

a convex set which is symmetric with respect to permutations of the components of each

g-1
point, Moreover, |J E; is the set of all extreme points of ¥,.,.
i=1
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Note that(log(x,/x,), -+, log(%,1/%,))' =A(log x,, -, log %),

-1 0 0 « .+ 0 —1-

1 0 -« .« 0 -1

A . ..
— 1 _1 -

Thus the row space of A has rank ¢—1 and is orthogonal to 1'=(1,:., 1). For any
permutation (x,,+++, %) of (%1, +++,x,), there exists a (¢—1) %X (g—1) matrix C with
|Cl=1 or —1 such that A*=CA and [log(xm/x(q)),---,log(x(q_l,/x(q))]:A*(log Xy, e,
log x,). Since the model (1.1) and (1.2) are linear and quadratic polynomial of (log
(x1/25), -+, log (x4_1/%;)), they are invariant under permutations of the components of
each point in y,_;. Thus the direct application of the invariance theorem yields that
there exists a symmetric D-optimal design on Yg-1.

Define

zi=log(x:/%,), i=1,+,q—1 3.1
and consider a mapping % : (21, -, %)= (21,+,24.1) on y,_,. It can be easily checked
that % is one-to-one. Let Z,_, be the image of Ya-1.

Lemma 3.1. Z,_, is the convex hull of those points corresponding to the extreme
points in y,.,. Also Z, , is symmetric with respect to (i) permutations of the components
of each point 2z, (ii) sign changes of z and (iii) 8@ =(21—24.1,***, 24_p—24_, —Z4_1).

Proof. For any z and 2* in Z,_;, let x=A"1(2) and x*¥=p"1(z¥),

Then

az+(1—a)z*=a(log(x:1/%,), -+, 10g (4_1/%,))
+(1—a) (log (x,*/x*), ++-, log (x,_,*/x,%))
=a(log(x,/x) + (1—a)log (x,%/x,%), -+, alog(x,_1/%,)
+(1—a)log(xg_1*/x.*))
={ron(i) (e (55)) 5 ton(528) (o (35)) )
&Z,,
since (xil',;)a x*>0, ¢=1,---,q. Thus Z,_, is convex,

For the symmetry of Z,_,, it suffices to show that the set of extreme points is sym-
metric since Z,_, is convex, Recall that the mapping % is one-to-one. So, the set of
extreme points of Z,_, is hCQIIE,-), which consists of 2(g—1) points,
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+ (log 9,0,+:-,0)
(3.2)
+(log 4, log 8,:,log 9)
and all the permutations of components of each point. It can be easily checked that
(21— 2q-1, """+ Zg-2—2q-1, —z,_1) is one of extreme points of Z,_, for each point z in(3.2).
Figure 3.1 provides a sketch of x4, and Z,_, when ¢=3
Let £ be a symmetric design on g 1. Then, by Lemma 3.1, the reduced design is
symmetric on Z,_;. Throughout the paper, we shall use the same notation & for a

symmetric design on ¥g-; as well as the reduced design on Z,_;.

4. Linear log contrast model

Consider the linear log contrast model
Tu(3)= o3 B 108 (xi/ %)

on y,.,. Chan(1986) found a D-optimal design for this model by using the equivalence
theorem. Using the invariance theorem, we simplify arguments to find a symmetric
D-optimal design for the linear log contrast model in the following.

Let £* be a symmetric D-optimal design on x,.,. Note that d(&*,2)=f()' M (£*)
f(2), f'@)=(,21, 21), is a quadratic function of z;. The equivalence theorem (1. 1)
implies that only extreme points in Z,_, could be in the support of the reduced design

. . . . q_l
&* By Lemma 3.1, we can restrict £ being a symmetric design on U E;.
i=]

{ log 80}

0, log &

0,0,1)

X2 » 7,

Figure 3.1. A sketch of X,_, and Z,_, when q=3
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Let & be a symmetric design such that
pi=E&(ED), i=1,-,q—1, 4.1)
which is, & puts uniform mass p,»/(?) at each point x in E;, Now, the problem reduces
to finding p; which maximizes |M(&) .
From the symmetry of the reduced design & on Z,.,, E‘zz,~FE%(z,—z,)(—z,) and
Ef2,=F%(—2z,). So
Efzg=— B2 and Efz,=(, (4.2)

Letting m,—=E%z2,
1 0
M(f):[ 0 %mz(lq-l‘*‘]) } (4.3)

Thus m?x]M(S)] is equivalent to méaxE‘zf_

By conditioning on x,,

), )
g-1 . : N .
Fép 2 | A= ( i—1 t i (log 8)*
wEL [ =T () T (%)
i i
! 2i(g—1i) 1 2
= i+ ——~——2+ (log 9)%
{_.?P PGS (log 0)
Noting i(¢g—1), 1<<i<g—1, is maximized at the nearest integer to ¢/2, we have the

following theorem:

Theorem 4.1. Any symmetric D-optimal design &* for the linear log contrast model

on y,_; is given as follows:
§¥ (£, ) =1 if ¢ is even
and §*(E_y,,.) FEX(Eqinr 2y =1 if g is odd.

5. Quadratic log contrast model

Consider the quadratic log contrasts model
1oV =603 B Tog e/ 7) 33 By Tog el ) Tog (/)
on yg.;. It is well known (e, g. Scheffe(1958)) that the number of regression functions
in the model is (751).
Lemma 5.1. Every D-optimum design £* on %z-1 is supported by a subset of

-l .
E=QU1 E;, which is the set of all extreme points and the center point of ,_,.



D-Optimal Designs for Log Contrast Models 77

Proof. By Lemma 3.1, it is equivalent to showing that only extreme points and the
center point (0,+++,0) of Z,., could be the support points of the reduced optimal design
g% Invariance arguments yield that d(z, &%) for any optimum £* is symmetric under the
group of the symmetries of Zg 1. Note d(z, &%) is a quadratic function in z;, Thus d
(2,8%) has at most only one local maximum on any ray.

Let B be the subset of Z,.1, where d (z,&*):(q"‘z_l). The equivalence theorem implies
that the support of the D-optimal design £* is contained in B and the function d has
the maximum at each point in B. We shall show that the existence of points in B—J,
where J is the set of all extreme points and the center point of Z,.., leads to a con-
tradiction.

Suppose z in B—J is in the interior of Zg_:. By the symmetry of B, there is another
point z* in B—J on the same ray. Thus the function d has two local maximums at 2
and z*, which is a contradiction.

Suppose z in B—J is on the boundary of Z,,. By the similar arguments, it suffices
to consider that z is the linear combination of the two extreme points, say, log a(1, -,
1,1) and log a(1,-++,1,0). The symmetry of d(z, &%) yields that z is the middle point
of those two extreme points, which is log 6(1,-, 1, 1/2). Now, set

21:,22:~--:zq_2:22q_1.
Then,
d((2z,H,--~,2zq_1,zq_l),E*):d((ZZq_l—zq_l,---,2zq_1—zq_1, —Zg.1),E%)
—d((2g-1, " Za-1> —Za-1), &%)

So d(log 8(1/2, -, 1/2,—1/2),§)=d(log 51, 1,1/2), 6% =("5 1) and then, log 3(1/2,
v 1/2,—1/2) is in B. By the symmetry of B, so is log 3(—1/2,-,—1/2,1/2). But
those two points are on the same ray and interior points of Zg_y, which 1s a contra-
diction.

By Lemma 5.1, we restrict & be a symmetric design on E and let p=E(E;), i=0,-,
g—1L

We consider the log 5—1 case since the D-optimality criterion is invariant under the
scale changes of independent variables for the polynomial regression. Then, from the
symmetry of &, we get

Eezleezﬁ:ElezzzzEezlzzzszo
E5.zl,22:E5,213;:2:Elezzzz———(1/2)E5z12:(1/2)Ee214 (5.1)
3E52122223—2E€z1z223z4:(1/2)E5z1“.
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The last equality follows from
Ef(z1—2,) (2,—z,) (23—24)(—24):E521222324_ »
For the purpose of partitioning the information matrix M(¢), it will be convenient

to write f(z) in the linear terms, 1 and the quadratic terms,

For g=3,
- (/2)ym I+ (1/2)m,] 0 0 0 -
1 mzlé (1/2)m,
M(&) = , (5.2)
A/2ym L4 (1/2)m, J (1/2)m,1,
- 1/2)ym, -
and then,
| M) | =g mz?(2—m,). (5.3)

|M(&)| is maximized at my,*=5/9. But
mzzEe%z:%(ﬁx‘f‘Pz)-

So, py+1,=5/6 and p,=1/s. Thus, any symmetric design with &*(E,) =1/6 and &*(E,)=
5/6—&*(E,) is a D-optimal design,

For g=4, letting Moy =E%2,22,2,,

- (1/2)”12[3‘*‘(1/2)”’!2] 0 0 0 =
1 (1/2)7’”21,3 myl’y
M) = . (5.4)
((l/z)mz_m211)13+m211] (g — (1/2)»m2)I3+ (1/2)7}12]
- (1/2)m213+(1/2)m2] -

Using some formula for the determinant of the partitioned matrix and then, noting that
(alI+b1])(a21+b2]):(02[+b2])(a11+blf)a we get

| M(&) | =ty (ma—2mys)? (2 — 3,7, (5.5)

It can be checked that (5.5) is maximized at

_ 87T+ V8P =7300
*_\
" 200
But

mzzEEzf: (1/2) (P1+P3) + (2/3)1’2

and m211=E‘z1"’zzz3=(1/4) (D1+23).
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So p,=. 0814, p,—.4304 and p,+p;—.4882. Thus a symmetric D-optimal design is given
by
E*(Ey)=. 0814, &*(E,)=.4882—E*(E;) and §*(E,)=.4304.
Figure 5.1 provides the moments space (n,, #,,).

Mayy

E, or I,

1744 - . - -

im} m¥,)
.

E,

m;

E, 1/2 2/3

Figure 5.1. Moments space (., m,,) when g—4

For ¢>>5, similar arguments may hold but the computation of [M(&)| will be very

complicated.
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