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ABSTRACT

Minimum L, norm estimation is a robust procedure in the sense that it leads to an
estimator which has greater statistical efficiency than the least squares estimator in the
presence of outliers, And the L; norm estimator has some desirable statistical propert-
ies. In this paper a new computational procedure for L, norm estimation is proposed

which combines the idea of reweighted least squares method and the linear programming
approach. A modification of the projective transformation method is employed to solve
the linear programming problem instead of the simplex method. It is proved that the

proposed algorithm terminates in a finite number of iterations,

1. Introduction

We consider the problem of estimating the parameters of a linear regression model,
y=XB+e (1.1
where y is an #-dimensional vector of observations, X is an #Xm matrix of known
quantities on m independent variables, B is a vector containing m unknown parameters,
and & is a vector of # random errors which are independently and identically distributed
according to some distribution,
The method of least squares is usually regarded as the most suitable technique for
estimating the parameters of a linear regression model when the errors follow a normal

distribution and the regressors are orthogonal, In many practical situations, however,
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it may happen that some model assumptions fail to hold. Furthermore, the assumption
of normality of errors in a regression model can not always be taken for granted.
When the distributions of errors are non-normal, the least squares method may yield
relatively poor estimates of the regression coefficients. A particular problem is estim-
ation in the presence of outliers. If one has a problem with any significant number of
outliers, then the underlying error distribution may not be normal, and it has been
shown that the least squares method is rather inadequate. This fact has led to the
development of an alternative approach which is called minimum L; norm estimation,

Statistical properties of the L; norm estimators in small samples are not known exa-
ctly. However, a number of simulation studies have shown that the L, norm estimators
are more efficient than least squares estimators in small samples when the errors follow
certain heavy-tailed distributions. These studies on the statistical efficiency have been
done by Rice and White (1964), Blattberg and Sargent (1971), Kiountouzis (1973),
Rosenberg and Carlson (1977), and Pfaffenberger and Dinkel (1978). Bassett and Koe-
nker (1978) provide the asymptotic results on the L, norm estimator, and statistical
inferences based on their results have been proposed by Dielman and Pfaffenberger
(1982).

There are several types of procedures for computing L, norm estimates. One type
of procedure makes use of linear programming; some examples are Wagner (1959),
Fisher (1961), Barrodale and Roberts(1973), Armstrong ef al. (1979), and Abdelmalek
(1980). The others use the reweighted least squares method or optimization technig-
ues; some examples are Schlossmacher(1973), Bartels ef al. (1978), and Wesolowsky
(1981).

In this paper, attention is focused on the development of a new computational procedure

for L, norm estimation,

2. Proposed Computational Procedure

We consider the following linear programming problem to compute L, norm estimates
of the parameters in the linear regression model (1.1):
minimize l'e"-+1l'e”
subject to Xg+1Ie"—Ie"=y @D

e, e >0
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B unrestricted
where I'=(1,---,1), and I is the n-th order identity matrix. The components of vector
e’ are vertical deviations above the fitted hyperplane and the components of vector e-
are vertical deviations below,

Karmarkar (1984) proposes a new polynomial-time algorithm for linear programming
problem of standard form. It is assumed that the minimum of the objective function is
zero and there exists an initial feasible solution to the problem with all components
positive. And then a projective transformation and its inverse are employed to get an
optimal solution, Karmarkar states that any type of linear programming problem can be
converted to the standard form by a preprocess, and his approach can be applied to the
problem with unknown optimal objective values. One variant of Karmarkar’s original
algorithm has been proposed by Vanderbei ef al. (1985). It considers the general linear
programming problem which has full rank and an initial interior feasible point. It uses
a linear scaling transformation rather than a projective transformation at each iteration,
and repeats until some suitable criterion is satisfied, And there is no requirement that
the optimal value of the objective function be Z€ro,

The L, norm estimation problem can be solved by applying Karmarkar’s algorithm or
a varient of that to the primal formulation(2. 1). However, it has been shown that the
direct application of these algorithms to the primal linear programming problem is not
very efficient because the dimension of the constraint matrix of problem(2, 1) becomes
large when a large number of observations are involved, So we start with the dual
formulation. From the primal formulation, the dual problem can be written as

maximize y'w
subject to X'w=¢ (2.2)
~I<w<1
where X has full rank, and w=(wy,w,, ---,w,)" is an n-dimensional vector of dual vari-
ables,

The problem(2. 2) has lower and upper bound constraints. To deal with this bounded
variable case, a special linear transformation is employed which is similar to the linear
transformation of Vanderbei ef al. By defining D=diag [v;] where v;=1—w; if w;>0,
vi=1-+w; if w;<0, i=1,2,+--,n, and putting w=Dr, we can transform the problem (2, 2)
in w-space to the problem(2.3) in r-space:

maximize (Dy)'r
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subject to (DX)'r=0 (2.3)
—1<Dr<l.
This transformation does not affect the solution of the problem(2.2). The motivation
for considering the linear transformation r—D~'w is the following: If the current feas-
ible point is located close to the boundary of the polytope, the movement in the gradi-
ent direction may not give a substantial reduction in the objective function, Therefore,
the current feasible point is linearly transformed to a point which makes the smaller
slacks in the inequality constraints so that all of the boundaries are sufficiently distant
from that point in the new space. In the transformed space, the current feasible point
can be moved sufficiently to a new point along the projected gradient.
At the k-th iteration we compute the projection of Dy onto the null space of (D, X)'r,
=0 as follows
2y=[I1— (DX) (D1 X)' (D X)} H(DeX)'1(Dry).
And then an improved feasible point(ry,,) can be obtained by moving along the proje-
cted gradient. Denoting 1 be a step length we can form the following,
Tro=Tp+ A8,
Mapping this new point back to the w-space by the inverse transformation of w=Dr,
we get
Wy =wi+AD, 2,
Let py=D:é, and i=a/w; with 0<{a<1, then
Wi, =Wi+ (@/®1) Pr
where p, is the projected gradient in the w-space at the k-th iteration,
Since we want to ensure the feasibility of new point(wg,;), i.e., X'w,,0= and
—1<w;, <1, w; should be chosen as,
wk:mai-x{uk,i} where wy ;=pi i/ (1—ws,:) if pi,i=0, g, i =—Pr,i/ (1w i) if pr:<<0
where w;,; and p, ; are the i-th element of vector w; and p,, respectively. This result
is shown in the proof of Theorem 2. 1.
This scaling scheme requires fewer iterations and less computation per iteration than
transforming the vairables and explicitly including the lower and upper bound constraints
within the constraint matrix X in(2.2) by employing slack variables. The proposed

algorithm generates a sequence of points, Bo,ﬁl,---,ﬁk, as follows:
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Algorithm BKIML1

(i) Initialization; set k=Q and w;=0.
(ii) Define D;—diag [vs,:], where v; ;=min {14-ws i, 1—ws )}, i=1,--+,n. Transform
X and y into X¥=D,X and §=D,y, respectively. Compute &,={I—X(X'%)"1%'}5.

(iii) Compute py=D,é,.

(iv) If | palle<< for some chosen tolerance >0, then compute Bk:(f’)?)‘lff’& and

stop.

(v) Let a)kzm?x[max{pk,,-/(l—wk,;), —Pi,i/ (1+ws,:))]. And set the new iterate

Wy =W+ (@/we) P
Increment & by one and go to step (ii).

We note here that, in our Monte Carlo simulation experiments, 6=10"° and a=0. 97
appear to work well in the proposed algorithm,

The computation of ﬁk:(f’)?)'l)?’j'» in step (iv) can be obtained as follows. From
the proof of Proposition 1 in Vandervei et al. (1985) and the problem(2. 3), it follows
that there exists a vector 8; such that

B (DiX)'=(Dry)'. 2.4
It can be shown that 8, is the vector of dual variables corresponding to the constraint
(D X)'r=0 of the problem(2.3). And the scaling leaves the duals with respect to the
problem (2.2) unchanged. Since (D;X) has full rank from the assumption, (X'D2X)!
exists for all k. Hence, (2.4) can be rewritten as

8:=(X'D3?X) ' X'Dy’y

=&X'X)X'5.

It is the vector of current estimates of 8 which is the reweighted least squares solution,
This is the main idea of the proposed algorithm which combines the iterative reweighted
least squares method and the linear programming approach,

In computing B,=(X'X)"1X'5 in this algorithm, we notice severe numerical accuracy
problems associated with the inversion of (X"X), since the matrix (X’X) can often be
a highly ill-conditioned matrix, Thus we employ an orthogonal decomposition approach,
in particular, Householder transformation used in the least squares method, This app-
roach can avoid many numerical problems associated with the computation of 8, and

the projected gradient, and yields accurate and stable solutions even though the matrix
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X is highly ill-conditioned. Moreover, at each iteration of the algorithm, the residuals
and hence the projected gradient can be computed without explicitly computing ﬁk, The-
refore, this implementation reduces a significant number of computations,

Theorem 2.1. Fach iterate w, of this algorithm is feasible for the problem(2.2).

Proof. In the initial step we set w,=0 as an interior feasible point, therefore X'w,—0
and—I<w,<I, that is, w, is feasible, Assume that feasibility holds at the k-th itera-
tion, then

X'wy =X {wi+ (a/ws) pe}
=X"w,+ (a/w) X'[DF {y—X(X'DiEX) " X' Di’y} ]
=X'w,+ (a/w) (X' Dy — X' D X(X'D32X) 7 X' Dy}
=X'w,
=0.
And w; must satisfy the inequality
— 1wy i+ pr, i/ n<<], Le, —1<we,,,: <L
Therefore, it follows that
(i) if ps,;>0, then wp<{—ps i/ (1+4-ws,:) or W= pr,if (1—we i)
(i) if ps,:<0, then @< py i/ (1—wy ) OF Wx=>—p,i/ (1+wWe,:).
Consequently, we can choose
wk:m?X[maX[Pk,i/(l*wk,i), — b,/ (1w, )} 1.
Thus, the feasibility holds at each iteration,
Corollary 2.1. Weak duality holds between the problem(2.1) and the problem(2.2).
Proof. From the feasibility of w; in Theorem 2.1, it follows that
y'wi—e,w;
el lwille
< Hesll; since [[wyll.<1
=le*+l'e".

Lemma 2. 1. If p,=0, then w, is optimal. Otherwise assume that p,50 for all k.
Then {y'w,} converges in problem(2. 2).

Proof, If p,—0, then €,=0 which means that the objective function is a constant for
all feasible solution, Hence, in particular, w, is optimal. Now suppose p,=+0 for all k&,
and first show that {y'w,} is a strictly increasing sequence, The projected gradient in
the transformed space is obtained as

ex=Dry—DpX{(DeX)" (D X)} 1 (D1 X)' (Dry)
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and it is transformed to the original space by,
P:=D?y—D?X{(D X)) (DiX)} (D2 X)' (Dry). (2.5)
It follows from equation(2.5) that
Ly— (D) ']’ =y’ DX (X' D2 X)X (2.6)
Now the follwing relationship can be obtained from Theorem 2.1 and (2.6),
X' (wp,;—~wi) =0
Y D2AX(X'D2X) ' X (wy,,— W) =0
Y' (Wi —wi) =pi’ (Di*) 7 (Wi —ws).
Furthermore, since (D;%)7! is positive definite and p50 it follows that
Py (D)7 (Wr—wp) =p/ (D) 7w+ (@/ wp) pr—wy)
=(a/ww) p' (Di®) "' o2
>0.
Therefore, y'w;,,>y'w,. Since {y'w;} is bounded above by the weak duality in Corollary
2.1, {y'w} converges. 7
Theorem 2.2. The proposed algorithm terminates in a finite number of iterations for
some chosen tolerance >0.
Proof, From Lemma 2.1, we know that
Y'wr,—y'wi=(a/ww) pi' (Di?) ' pa
=(a/w)||1Dy " pill”.
The convergence of {y'w,} implies that its difference sequence tends to zero,
(a/w) | Ds™" pall®—0. 2.7
From step(v) of the proposed algorithm it follows that
Oéwr—‘m?xfmax{Plz,i/(l—wk,i), —bs,i/ (1+wy 1)} ]
Sm?-x{lpk,il/vk,i}
=Dy Pl
and hence we know that
0<allDy 7 pll;=c|| Dy  pallo*/ || Dx " Pl
<allDy ™ pallo*/ 11 Ds ' Palle
<(a/w) 1D palls®.
Therefore, (2.7) implies that || Dy 'psll,—0. Since
m?xlpk,ilzllpkllm
<|IDx "' pall.o
<NID: ™ pillz
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it follows that pi;—0 for all i=1,---,n. Hence, the proof is complete,

Example 2. 1. We now illustrate the steps of the proposed algorithm on the computer-
generated data, This set of data is generated by Hoffman and Shier(1980) test problem
generator, There are 7 observations and 3 independent variables including a intercept
term. The 2nd and 3rd column of X are generated from a normal distribution with mean
(5,10) and variance(1.3, 1.9), respectively. The optimal L, norm estimates of the
regression coefficients are specified as(2, —2, 5). The errors were generated from a

normal distribution with mean Q and variance 2. 3.

1.000000 5.766515  9.235767 38. 55223
1.000000 4.661123 11.439430 49.57025
1.000000 2.970308 9.238118 45.27223
X=1.000000 2.740973 11.706110 Y= 55.04866
1.000000 6.769230  9.862975 37.77638
1.000000 4.075700 7.034439 25.13447
1.000000 4.157894 12.830360 | 57. 83601

The L, norm estimates of the parameters in the linear regression model(1.1) are co-
mputed in 6 iterations by the proposed algorithm BKIML1, Table 2.1 represents the

iterative sequences of the values computed at each iteration,

Table 2.1. A Summary of Each Iteration of BKIML]

jtera. initial 1st 2nd 3rd 4th 5th 6th

—1.222812  3.415632 1.899648 2.005962 1.999910 1. 999998 2.000001
B¢ —1.981091 —2.022338 —1.999285 —2.000271 —2.000001 —2.000009 —2.000009
5.318323  4.883875 5. 005493 4. 999597 5. 000007 5. 000003 5.000003

2.083245  0.640561 0.022162 0.018250 0. 008792 0.000264 0.000234
—0. 811465 —0.218066 —0.137289 —0.004640 —0.004027 -—0.002238 —0.000067

3.248198  0.082373 0. 080605 0.034147 0.001025 0. 000909 0. 000551
€ —0.555336  0.004152 0.028612 —0.000491 0. 000023 0.000005 —0. 000000
—0.044833 —0.117521 0.033490 —0.000187 —0.000002 0. 000006 0. 000000
—2.979799 —0.484008 —0.112598 —0.023387 —0.007846 —0.001054 --0.000573
—0.940010  0.120244 0. 022861 0.000328 0. 000007 0.000005 —0.000000

2.083245  0.242059 0. 000251 0.000175 0.000041 0. 000000 0. 000000
—0.811465 -—0.165223 —0.069671 —0.000071 —0.000053 —0.000016 —0.000000

3.248198  0.002471 0. 002117 0. 000386 0. 000000 0. 000000 0. 000000
D+ —0.555336  0.003463 0.024017 —0.000486 0. 000023 .000005 —0.000000
—0.044833 —0.115947 0.027161 —0.000187 ~—0.000002 . 00000€ 0. 000000
—2.979799 —0.053314 —0.003312 —0.000141 —0.000016 —0.000000 —0.000000
—0.940010  0.086490 0.019438 0. 000324 0. 000007 . 000005 0. 000000

[ ]

[
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0.000000 0.622114 0. 988663 0.990439 0.995396 0.999862 0.999878
0.000000 —0.242324 —0.492522 —0.984776 —0.986782 —0.992655 —0.999780
0.000000  0.970000 0.973742 0. 988696 0.999661 0. 999699 0.999818
wy 0.000000 —0.165838 —0.160594 0.009095 —0.004717 —0.002149 —0.000028
0.000000 —0.013388 —0.188967 0.002939 —0.002361 —0.002625 —0.000030
0.000000 —0.889849 —0.970582 —0.993985 —0.997981 —0.999729 —0.999853
0.000000 —0.280713 —0.149741 —0.012408 —0.003214 —0.002403 —O0. 000060

llexlls ‘ 10.662885  9.413973 9.224974 9. 123723 9.122742 9.122725 9.122708

v'w, ’ 0.000000  7.651545 8.752752 9.042275 9.101018 9.118243 9.121284

This example not only illustrates the performance of the proposed algorithm but shows

numerical aspects of the theorems, corollary and lemma proven in this paper.
3. Computational Comparison

Some computational experiments were conducted to get an idea of how well the
proposed algorithm performs on large data sets. Five algorithms were compared on the
basis of computational efficiency, and numerical accuracy and stability of the estimates
computed.

The test problem generator, L1GNR, of Hoffman and Shier(1980) was used to generate
25 replicated data sets for each possible combination of number of parameters and num-
ber of observations(m=2,5, 10, 15, 20, 50, 100, 200; #=30, 50, 100, 200, 400). Each data set
was generated randomly with specified optimal solutions. It was found that a large nu-
mber of design matrices had large condition numbers, All computations were done on
an IBM 370/158 computer using the FORTVCG compiler. The performance indicators
considered were CPU time and number of iterations to compare computational efficiency,
and mean absolute deviations and standard errors of the estimates to compare numerical
accuracy and stability.

We collected the CPU time(in milliseconds) and the number of iterations for each
combination and for each algorithm. The relationships between the CPU time(and the
number of iterations) and problem sizes were analyzed using a log-linear regression
model to determine the combined effects of variations in m and » on the CPU time(and
the number of iterations), Table 3.1 gives the results obtained.

These results show that CPU times of all algorithms are more sensitive to increases

in m than to increases in #, and that numbers of iterations, except for the proposed
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Table 3.1. Performance Comparison of Algorithms

Algorithm CPU time Iteration
Abdelmalek 1 0. 000056 m?- 1498 pt-7852 0.1161 m!-2816 yo-0082
Armstrong et al. l 0. 000053 w5174 3 1-4953 0.1916 Jp0- 9990 05369
Barrodale and Roberts 0. 000540 wm!-6580 14370 0. 8250 myl- 0968 50.1952
Bartels et al. 0. 002596 m!-748 pt-2188 0.3623 ml 2741 pf-299
Kim 0. 004129 gl-S118 p1.2210 5.2571 g0+ 0314 50,1090

algorithm, are also more sensitive to increases in # than to increases in zn. We note
that the CPU time and the number of iterations of the proposed algorithm are the least
sensitive to increases in problem size.

Along with comparing the computational efficiency of algorithms, we checked numer-
ical accuracy and stability through the mean absolute deviations and the standard errors
of estimates computed by five algorithms, There was no significant difference in numerical
accuracy among the algorithms, But the proposed algorithm computed slightly more
accurate estimates than the others, and yielded the most stable ones,

In the light of these experiments, the proposed algorithm appears to be more compu-
tationally efficient than the others, except for Barrodale and Roberts’, when problem
size is considerably large. In addition, it yields numerically accurate and stable estima-

tes irrespective of problem size.
4. Concluding Remarks

A computational procedure based on a modification of Karmarkar algorithm for linear
programming problem is proposed for minimum L, norm estimation. The proposed algo-
rithm yields numerically accurate and stable estimates even though design matrix X is
highly ill-conditioned. 1t is achieved by employing the orthogonal decomposition approach.

It can be shown that the proposed algorithm requires fewer iterations to reach the
optimal solution than are required by the simplex-type algorithms when problem size is
large. The reason is that our algorithm cuts across the interior of a convex region while
the simplex-type algorithms move from vertex to vertex of a convex polyhedral region,
(But some algorithms use the bypassing technique).

An additional advantage of this algorithm is that it is computationally simple and

easy to implement because any basic least squares algorithm, an accessible part of any
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subroutines or statistical packages, can be used.

On the other hand, since the amount of computation required per iteration is usually

greater for the proposed algorithm, it is not the most computationally efficient algorit-

hm,

One important point to be considered is the updating of the orthogonal decompos-

ition in the implementation of this algorithm. If we can update the previous orthogonal

decomposition of X=D,X at the next iteration, this would significantly reduce the nu-

mber of computations required by the proposed algorithm,
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