w3 87-24-6—-24

A Symbolic Layout Generator for CMOS Standard Cells
Using Artificial Intelligence Approach

(1545 712 ol 6:} CMOS ZFAl9 AEH

2o MBr FE o A
(Jong-Keun You and Moon-Key Lee)

-2 S

2 wRoli CMOS EF4lel AEel dlojobgol o
ek 4 el R e =Sl hAAYS ARG L throl TS
FoloE gz e o) fujol ik ofetel £l
e waetzl gl WA AN 24 FADCHS FUF FLIEE ol 1o
Agstel elolol el BEE ZAHIAEE sholch wq UEHuAl 9H4F Gt ohel 2gelx

bl A =
7hgskAl shed Mok chekdt dlelopR g & 4 UEE shaieh

‘U‘X]“o; 7\wje] A Bu}

£ ﬂl*loli 2z s
'ﬂHx zhed of] 44

r_%: Je oE
o
R
Ay

tel s A shEg gy,

Abstract

Abstract-SLAGEN, a system for symbolic cell layout based on artificial intelligence appro-
ach, takes as input a transistor connection description of CMOS standard cells and environment
information, and outputs a symbolic layout description, SLAGEN performs transistor group-
ing by a heuristic search method, in order to minimize the number of separations, and then
performs group reordering and transistor reordering with an eye toward minimizing routing.
Next, SLAGEN creates a rough initial routing in order to guarantee functionality and correctn-
ess, and then improves the initial routing by a rule-based approach,

I. Introduction

Since the VLSI design process includes
various kinds of complicated and large scale
problems, most of these problems are difficult
to solve by conventional algorithmic
approaches. In order to solve these problems,
over the past decade, various kinds of

IR, WL A E 1BARE
(Dept. of Elec. Eng.,
FESEE 1987 8 H 221

Yonsei Univ.)

(3% This work was Supported by the Korea Rese-

arch Foundation.)

(1080)

heuristic algorithms have been developed and
applied to real design problems. But the solu-
tions by heuristic algorithms are still less
satisfactory than an human expert’s results
(1].

However, recently, as new approaches to
attempt to apply artificial intelligence strateg-
ies to VLSI design have been proposed, these
problems seem to be sclvable. Particulary,
knowledge based system, a program in which
the domain knowledge is explicit and separate
from the program’s other knowledge, have
computers carry out expert-level design tasks
by reasoning the given problem from domain

152

knowledge [2], [3], [4].

According to this trend, this paper describes
an artificial intelligence approach used for
symbolic layout generation of CMOS standard
cells [5], [6]. It also describes a program
called SLAGEN (Symbolic Layout Generator).
SLAGEN creates symbolic cells by separately
performing transistor placement and routing.
In performing placement, SLAGEN minimizes
the number of separations by using a heuristic
search method. A separation is required
when there is no connection between physically
adjacent transistors, In performing routing,
SLAGEN uses a rule-based approach in order
to apply human knowledge to routing. Also,
it can produce a symoblic cell which satasfies
the requested position of each input/output
signal and the height of the cell specified by a
designer., SLAGEN was implemented in the
GCLISP (Golden Common Lisp) [7] and runs
on a personal computer such as IBM-AT,

. System Overview

SLAGEN requires two inputs: MODEL and
ENVIRONMENT. First, a given circuit must
be defined in terms of transistor connectivity.
Second, it requires information about the
position of each external signal and the height
of the cell. SLAGEN outputs symbolic layout
descriptions in ICDL (Intermediate Circuit
Description Language) [8]. ICDL describes the
circuit of a cell symbolically in terms of trans-
istors, wires and interlayer contacts arranged on
a vitual grid. SLAGEN consists of two
subsystems, TRANPLA and TRANROUT (see
Fig. 1). The former performs transistor place-
ment and the latter performs routing.

<SLAGEN>

MODEL }——{ TRNPLA]—a[TRANRuﬂ-— 1CDL
ENVIRONMENT %

Fig. 1. The architecture of SLAGEN,

. Tranpla

In order to reduce cell area, the transistors
must be so placed that the number of separ-
ations is minimized and the given environment

(1081)

19874 11H B ILRERE £ 24 % £ 6 5%

conditions are satisfied. TRANPLA executes
transistor placement by three steps: transistor
grouping, group reordering and transistor
reordering.

1. Transistor grouping by a heuristic
search method

In CMOS, all complementray static gates
may be designed using a single row of n-
transistors below a single row of p-transistors,
aligned at common gate connections. There-
fore, transistor placement is a matter of deter-
mining the order of the TRPAIRs so that the
number of separations may be minimized. A
TRPAIR consists of a n-transistor and a p-
transistor aligned at a common gate connec-
tion,

The role of transistor grouping is to organize
all the TRPAIRs of a given circuit into several
groups or a group so that the TRPAIRSs of each
group may share a common source-drain
connection. Transistor grouping is executed
by a heuristic search method, one of the
problem solving methods of AI [9]. The
objective of this procedure is to minimize the
number of groups because the number of
groups corresponds to the number of separa-
tions and so, the smaller the number of groups
is, the smaller becomes the cell area.

This search problem is characterized by an
initial state and a goal state description. An
operator transforms a state into another state.
The objective is to find a goal state.

(1) state description

A state is described by a list of groups
including TRPAIRs. Each group is expressed
as a list of TRPAIRs which can share a common
source-drain connection, but group O, a initial
group, includes TRPAIRs ordered randomly.

(2) initial state

A initial swawe is defined as the following.
Its group O includes all the TRPAIRSs of a given
circuit except one and its group 1 hasa TRPAIR
group 0.

(3) operator

The operator tries to search the group 0 of
a given state for the TRPAIR which can share
a common source-drain connection with
the TRPAIRs included in the current group.
The current group indicates the group which

A Symbolic Layout Generator for CMOS Standard Cells Using Artificial Intelligence Approach 153

has been created last. For example, in the
case of the initial state, the current group is the
group 1. If such a TRPAIR exists in the group
then it is moved from the group O to the current
group. Otherwise, a new group is created and
a TRPAIR selected randomly from the group O
for the operator to create several new states
from a state because several satisfied TRPAIRs
can be found.

(4) goal state

The goal state is when the group O of the
state is empty. This means that all of the
TRPAIRs have been wused for transistor
grouping,

With the above definitions, the search
process is executed according to the search
flow for transistor grouping shown in Fig. 2.
In the search flow, a node is corresponding to
a state and the root node is the initial state.
CURRENT has a node to be expanded next.

We use an evaluation function to order
nodes on OPEN and to select a node to be
expanded next, The value of the evaluation
function of a node is equal to the sum of two
terms, the number of groups and the number
of TRPAIRs in group 0 The lower the func-
tion value of a node is, the nearer the node
will approach a goal node. Therefore, among
the nodes on OPEN, the node having the
lowest function value is selected and then
expanded. And so, it is possible to place the
transistors so as to minimize the number of
separations.

Evaiuate the evaleation function
of each successor
Add theze successors to OFEN

1

Seiect & ncde maving the iewest
function vaiie or I9EN
CURRENT@-the se.ected noce

]

Fig. 2. Search flowchart for transistor grouping.

(1082)

2. Group reordering and transistor
reordering

Since, in the transistor grouping process,
environment information is ignored and only
minimizing the number of separations is con-
sidered, it is necessary to reorder the groups
and the TRPAIRs of each group according to
environment information, in order to reduce
the complexity of routing. Fig. 3 illustrates
an example of group reordering and an example
of transistor reordering is shown in Fig.4. The
role of group reordering is to reorder the groups
according to environment conditions. The role
of transistor reordering is to reorder the
TRPAIRs of each group, if needed, but new
separations must not be created, As noted
above, TRANPLA minimizes the number of
separations and executes transistor placement
with an eye toward minimizing routing,

GROUP2 GROUP3 GROUPL

GROUPL GROUP2 GROUP3 GROUP
C| REORDERING)
CD ACD—-———b A C CDD
E-LEFT E-RIGHT

E~RIGHT E-LEFT

Fig. 3. An example of group reordering.

GROUPL GROUP1

TR. REDRDERING
ABCDE E —— | CDEAB E

E~-RIGHT E—RIGHT

Fig. 4. An example of transistor reordering,

IV. Tranrout

After completing the placement, SLAGEN
invokes TRANROUT. TRANROUT acts on
the placement description, the output of

TRANPLA, together with environment
information, TRANROUT creates a rough
initial routing in order to guarantee

functionality and correctness but it is indeed
very wasteful in area and performance. Ther-
fore, in order to improve the initial routing,
TR.ANROUT uses a rule-based approach [10].
TRANROUT operates by examining the rough
layout and iteratively improves the routing
according to a set of rules.

1. Initial routing

154

Using the virtual grid, the initial router
interconnects between the same signals by
using only one wire at one tract. And the
metal, diffusion and polysilicon layers can be
used in routing. The initial routing consists of
the following five steps.

STEP1) placement of pins

STEP2) placement of power lines
STEP3) placement of transistors
STEP4) routing of gate signals

STEPS5) routing of drain/source signals

2. Rule-based system

The rule-based system acts on the initial
rough routing to create improved results in the
form of ICDL. In other words, this system
examines the rough routed layout and improves
it by successive application of the rules. As Fig.
5 shows, this system consists of three major
components: a data memory, a rule memory
and a inference engine.

DATA MEMDRY RULE MEMORY

FACTS RULES
INFERENCE
ENGINE
CONTROL

Fig.5 The architecture of the rule-based
system.

1) data memory

A data memory serves as a global database of
symbols representing the symbolic layout of
a given cell. Basic elements, such as devices,
wires, pins and contacts, are required to
represent the symbolic layout of a cell. There-
fore, these symbols are stored in the data
memory, and also have attributes and values.
Attributes are properties associated with the
symbols corresponding to layout elements.
Table 1 shows the attributes of each elements.
Values specifies the specific nature of an
attribute in a particular situation.

19874 115 BITRERLE £ 24 % F 6 3

Table 1. Attributes of each layout element.

LAYOUT (| OBJECT

ELEMENT || NAME ATTRIBUTE

TYPE, B-POS,E-POS, B-MARK, E-MARK

WIRE WIR NAME

CONTACT CON | POS, CUT1, CUT2, NAME

PIN PIN | TYPE, POS, NAME

DEVICE [DEV |TYPE,POS,GAT,L-DIF,R-DIF, NAME

2) rule memory

The rules that embody the human
knowledge about routing are stored in rule
memory. The number of routing rules that
this system uses at present are 32. Fig. 6 ill-
ustrates five of the 32 routing rules.

Each rule has a condition part, indicated by
the keyword ¢“IF”, which describes the data
configuration for which the rule is appropriate.
A rule also has an action part, indicated by the
keyword “THEN”, which gives instructions for
changing the data configuration. The method
used to test against the contents of data
memory is conditon function calls, Also, the
method of function calls is used for right-hand-
side actions of each rule. Fig. 7 shows the form
of the rule which is corresponding to type 1
of Fig. 6.

3) inference engine

An inference engine is needed to execute
the rules. This system uses the forward-chain-
ing strategy which matches the left-hand sides
of rules to update the knowledge base by
making changes to data memory. Also, rule
grouping and data filtering are used in order
to improve the performance of the system.

<IF> <THEN> __»_[: — [:'
> TYPEL e @_

<IF> CTHEN>
t <D> TYPE4
E ~—

<IF> <THEN> —
 TYPER2
<IF> <THEN>
— <E> TYPES
<IF> <THEN>
<C> TYPE3

Fig. 6. Examples of Routing Rules.

(1083)

A Symbolic Layout Generator for CMOS Standard Cells Using Artificial Intelligence Approach 155

(SETQ R-RULE13 (ROUTING-PDIF3
(IF (PROPERTY %WIR1 NAME %NAME1)
(FIND-SECOND-MARK (%NAME1) % CON1)

(NEXT-CUT (%CON1 %WIR1) %WIRZ)
(NEXT-MARK (% WIR2 %CON1 %CON2)
(NEXT-CUT (%CON2 %WIR2) %WIR3)
(TEST-WIR- TYPE (%WIR3 (POLY)))
(FIND-FIRST-POS (%WIR1) %POS1)
(PROPERTY %CON2 POS %P0S2)
(TEST-FORM-PDIF3 (%P0S2 %WIR3))
(XY-PAIR (%P0S2 %PO0S1) %P0S3)
(TEST-DIF-TRACKS (%P0S1 %P0S3 (PDIF)
%NAMEL) %P0S4 %P0S5))

(THEN (MOVE-CON (%CON1 %P0S4)
(MOVE-CON (% CON2 %PO0S5))
(MOVE-WIR (%WIRZ %P0S4 %POS5))
(WIR-SHORTEN (%WIR3 %P0S2 %P0SS))
(REMOVE-WIR (%WIR1))

(REARR-CON (%CON1))
(REARR-CON (%CON2)))))

Fig. 7. A diffusion routing rule in the
GCLISP.

The rules which are in the conflict state with
each other, are organized into a group and are
executed through the recognize-act cycle shown
in Fig. 8 This cycle consists of three parts;
rule matcher, rule selector and rule executor.
Rule matcher finds all of the rules that are
satisfied by the current contents of data
memory, Rule selector applies a conflict
resolution strategy to determine which rules
will actually be executed, Rule executer
executes the selected rule, This cycle stops
when rule matcher can find no matches. The
other rules which are some what independent
have priority each. And, rule matcher begins
from the rule having the highest priority.

And, this system wuses a data filtering
strategy, which reduces the number of data
elements that are matched against each rule by
each rule,

DATA MEMORY

RULE MEMORY

RULE MATCHER

CONFLICT SET

RULE SELECTER

mSTAT'MTm
RULE EXECUTER

CHANGE DATA MEMORY

L

CONFLICT RESOLUTION
STRATEGY

Fig. 8. Recognize-act cycle.

(1084)

V. Examples and discussion

Fig. 9 displays SLAGEN ’s results for the
same carry cell with differently requested
environment inputs. In Fig. 9a I/O ports of
of the carry cell are at the top and bottom, and
in Fig. 9b. I/O ports are at the left and right.
And, Fig. 9¢ shows the result having the differ-
ently requested height from that in Fig. 9a or
Fig. 9b. Fig, 10 displays the initial routing
and the final result of dlatch cell, and Fig. 11
displays the result of jk tlip-flop.

I
(SETQ ENVIRONMENT 4

(CELL-HEIGHT= D f G Y
NDIF-HEIGHT= D b .
FDIF-HEIGHT= D

A POS= TH)

B POS= TB) i Sl S N

(123 POS= TB) I T

{CB PDS= TBR))) ‘\ B CB

(a) result with IO Ports at the Top & Bottom.

c_
P T
(SETQ ENVIRONMENT Ea
(CELL-HE1GHT= D B——‘—(: —f
NDIF-HEIGHT= 3 A—F —CB
PDIF-HEIGHT= 3
(A POS= L FPOS= 4) - 3
(B POS= L FPOS= 5) ¥ ¥
(CB POS= R FPOS= 4))) Lo o
C

(b) result with I/O Ports at the left & Right.

&

(SETG ENVIRONMENT
(CELL-HEIGHT= 17
NDIF-HEIGHT= 4 ka2 —
PDIF-HEIGHT= & ¥ 3
(A Pas= TR)
(6 FOS= TR)
« POS= TE)
(€B FOS= R)»)

‘.rﬁ ¥

(c) result with Cell Height of 17 Tracks.

Fig.9. Carry cells created by SLAGEN with
various environment inputs.

As shown in Fig. 9, SLAGEN can create
various layouts for the same circuit by changing
the environment input. And, as shown in
Fig, 10 and Fig, 11, SLAGEN minimizes the
number of separations by the heuristic search
method, Of methods to minimize the number
of separations, there is the minimal interlace
algorithm proposed by T. Uehara W,
Vancleemput{11]}. This algorithm is not

156

¥ —y

(a) Initial rough layout (b) Final result

Fig. 10. Symbolic layout of the DLATCH
cell by SLAGEN.

11

ISRES
TELL
1 9
I;
kS
T

]

filan

3 4*: g::é

¥ ' 4

(a) Initial rough layout

. 1 h 4 h 4

(b) Final result

Fig. 11. Symbolic layout of the JK flip-
flop cell by SLAGEN,

Vancleemput [11]. This algorithm is not
applicable to circuits including transmission
gates, but SLAGEN is applicable to all kinds of
circuits. And, several cell generators don’t deal
withcircuitsincludingtransmission gates [2],[12]

19879 11 BFIBEHRGE £ 4% & 6 %

or have disadvantage that the layout area in-
creases because of transmission gates [13].
However, SLAGEN performs compact layout
for circuits including transmission gates,

V1. Conclusion

This paper proposes the application of
artificial intelligence strategies to symbolic
layout generation of CMOS standard cells.
By the heuristic search method, the number of
separations can be minimized. By the rule-
based approach in routing, human knowledge
about routing can be employed easily, And,
since SLAGEN can creat layouts having the
ports in the positions which are requested,by
designer, we can get more varieties in layouts.

In order to improve the performance of
SLAGEN, it is needed to improve SLAGEN’s
run-time efficiency and control strategy, and
more powerful rules are reqired. And, the next
research phase will focus on converting
symbolic descriptions to mask level descrip-
tions.

References

[1] S. Goto, “Design methodologies”, Advan-
ced in CAD for VLSI, vol. 6, pp. 441464,
1986.

[2] Pall. W. Kollaritsch and N. Weste, “A
rule-based symbolic layout expert”, VLSI
Design, pp. 62-66, August 1984,

[3] Rostam Joobbani and Daniel P. Siewiorek,
“WEAVER; A knowledge based routing
expert”, IEEE Design & Test, pp. 12-23,
Feb. 1986.

[4] Hugo J. De man, “Dialog; an expert
debugging system for MOS VLSI design,”
IEEFE Transaction on CAD, CAD-4, no. 3.
pp. 303-311, July, 1985.

[5] JK. You, “A symbolic layout system for
CMOS standard dells using artificial in-
telligence approach,” M.S. thesis, Yonsei
university, Department of Electronic
Engineering, 1987,

[6] J.K. you, B.Y. Kim, M.K. Lee, “An auto
generation of symbolic layout for CMOS
standard cells using artificial intelligenece
approach”, The 40th Aniversary KIEE

(1085)

A Symbolic Layout Generator for CMOS Standard Cells Using Artificial Intelligence Approach 157

(71

[8]

(9]

[10]

[11]

Autumn Conf. Proceeding, vol. 9, no. 2,
Dec., 1986.

“Golden Common Lisp”, Gold Hill Com-
puter, Inc.

Neil Weste and Kamran Eshraghian, “Prin-
cipales of CMOS VLSI design”, 4 System
Perspectives, Addison Wesley, pp. 271-

308, 1985.
Nils J. Nilsson, “Principles of artificial
intelligence”, Springer-Verlag Berlin

Heidlberg New York, pp. 53-96. 1982,
Paul Harmon, David King, “Expert
system'’, wiley press, pp. 34-60, 1985,
Takeao Uehara and William M. Vanclee-
mput, “‘Optimal layout of CMOS func-
tional array”, IEEE Trans. on Computers,

[

(

vol. C-30, no. 5, pp. 305-312, May, 1981.

12] Nam Tosuntikool and Charles L. Saxe,
“Automated design of standard cells”,
IEEE Custom IC Circuits Conf., pp. 110-
114, 1984.

13] H.H. Kim, “Auto Generation of CMOS
Standard Cells,” M.S. Thesis KAIST,
Department of Electronic Engineering,
1986.

Acknowledgement

The authors gratefully acknowledge the
support of the Korea Research Foundation,

(1086)

