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On Minimum Time Joint-Trajectory Planning for the Cartesian

Straight Line Motion of Industrial Robot
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Abstract

Approximation of a Cartesian straight line motion with linear interpolation in the joint space
has many desirable advantages and applications. But inappropriate determination of the
corresponding subtravelling and transition times makes such joint-trajectories violate the input
torque/force constraints, An approach that can overcome this difficult and yield the joint-
trajectories utilizing the allowable maximum input trque/force is established in this paper.
The effectiveness of these results is demonstrated by using a three-joint revolute manipulator.

1. Introduction L . )
The application of the conventional optimal

control theory (including the well-known
minimum principle of Pontryagin to the
problem of minimizing the task execution time
seems difficult because of the complicated
dynamic equations and strong kinematic and
dynamic constraints. An alternative way to
study this problem is to divide the problem
into two parts: (1) offline minimum time
trajectory planning; and (2) on-line trajectory
tracking. Since several on-line path tracking
N T T——— schemes have been recently developed the
' minimization efforts are concentrated in the

(Dept. of Elec. Eng., Chung-Ang Univ.) off-line trajectory planning stage.
BESAT 1987 38 138 It is well known that achieving the Cartesian

Industrial robot is a computer controlled
mechanical manipulator. .Correspondingly,
there are many issues that must be investigated
to improve its productivity. One important
issue is the minimization of the task execu-
tion time. In this paper a Cartesian straight
line motion, which has many applications and
desirable advantages, is considered as the
specified task.
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straight line motion of the end-effector by
controlling the joints is a nontrivial task, A
practical alternative is to approximate this
motion by placing enough intermediate points
along the path and connecting linearly the
adjacent points in the joint space [8]. The
positional and orientational deviation resulted
from these linear interpolations shall remain
below certain prespecified deviation tolerances.
This approximation has distinct advantages,
including the efficiency of implementation, as
mentioned by Brady as well [2]. It is to be
noted that the method how to select the
intermediate points is not repeated in the
paper. After obtaining the intermediate points
[8], it is next step to determine every
subtravelling and transition times. Here
subtravelling time means the between two
adjacent intermediate points time and transi-
tion time means the time between two transi-
tion points (cf., Fig.3). Usually this determin-
ation [3] is based on the assumption of
constant constraints of maximum joint
velocities and accelerations. However, this
approach yields one significant drawback that
the resulting trajectories cannot utilize the
maximum capacity of the manipulator. This is
due to the fact that such constraints must be
derived at the worst case for realizing the
corresponding trajectories for any circumst-
ances. Futhermore, it is often difficult and
tedious to determine such constraints at the
worst case because these are usually obtained
experimentally for a given manipulator con-
figuration. To avoid these defficulties and
utilize the maximum capacity of the man-
ipulator, the dynamic characteristics of the
manipulator must be directly incorporated into
the trajectory planning, Thus an approach to
overcome the above-mentioned difficulties and
also minimize the subtravelling and transition
times subject to input torque constraints is

established in this paper.

The organization of this paper is as follows,
An efficient method to determine the minimum
subtravelling time subject to input torque
constraints is presented in Section 2, In
Section 3, joint-trajectories based on quadratic
polynomials are constructed at each transition
and a method to determine the corresponding
transition times is introduced. Computer
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simulations of the results developed in this
paper are described using a three-joint revolute
manipulator in Section 4. Conclusions are
defered to Section 5,

II. Minimization of Subtravelling Time

The nonlinear dynamic characteristics of the
manipulator are highly coupled. Two major
approaches, called Lagrangian and Newton
Euler methods, to formulate these dynamic
equations are usually used. Since Lagrangian
method provides the closed-form equations,
this method is used in the following analyslis.

i i Cu (@) Qth+gj(Q),

k=11=1

uJ:E Dy (Cl)é.lk+
k=1

forj=1,2,--,n (1)

Here q€ R" is a generalized joint coordinate
vector; élk is the velocity of joint k; éik is the
acceleration of joint k; u. is the input torque
applied at joint j; Djk (q) is the coupling in-
ertial term between joints j and k (for k=j,
effective inertial term at joint j); Cikl(q) is
the Coriolis effect at joint j due to the velocities
of joints k and £ (for 2=k, centripetal effect at
joint j due to the velocity of joint k); and g.(q)
is the gravity effect at joint j. It is to be noted
that Djk (a), Cij(q) and gj(q) are only position
dependent terms. To obtain the minimum
subtravelling time subject to input torque
constraints, it is necessary to incorporate the
joint positions, velocities and accelerations
of the trajectories into the above dynamic
equations. . .

Two adjacent points q1 and q1+1 are linearly
interpolated in the joint space (cf., Fig. 1). The
joint position q(y) €R™! between q1 and q1+ is
described as follows,

q(t)

i i

Fig. 1. Linear Joint Motion.
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a)=d+7r""'—d), (2a)
ALq¢+rAag- (2b)

Here Y € [0,1] is a normalized time defined
as y= —F t )/t with t as the subtravel-

ling time between q and q ! and Aql denotes
the angular displacement between q and q
The corresponding joint velocities and acceler-
ations are derived as follows.

a) Ada(?) _

dg() dy A Aq"
T dt (3)

dy dt = 4

()AdQ('}') dq(7)<§z>’ da) &y _ o
dt

e 4y dy di?

(4)

Substituting (2), (3) and (4) into (1 ) yields

Zn] f]Cm(q) VAN AN

A oL +e @), (52)
ti
A
- t(“)+g,<q) forj=1,2,+,n. (5b)
Here Aq 1s the angular displacement

between qkand qk 1. These equations are used
to compute the torques that are required for
executing the linear joint motions between two
adjacent points. It can be seen from (5) that
only the Coriolis and centripetal torques as well
as gravity torques are remained effective in the
dynamic equation (1).

By the statement of the torque constraints,
it is assumed that

uMt <y, <yufeX (=—uM"), forj=1,2n
(6)
Using this assumption in (5), we have
h,
"t —g, (Pt < :,Q) < {uP**—g, (@)}, forj=
i
1,2,n (7)

It is always assumed that all the actuators
can supply enough torques to counteract the
corresponding gravity effects, ie., u'nax >
g; (g) |, for 0 <y <1 andj=1,2,. .J., n. The
inequalities (7), on using (6), can be simplified
as follows.

| h,{(q)! e
u*—sgn(h, (q)) g (@)

ty =

ﬁtu- (8)

Here sgn (x)= 1} 1 for x >0 and -1 for x <o,
respectivey |, Dividing both sides of (8) by
,Aq; | and rearranging that result in

=
t tij

[agl _ 1ad4]
gl _ 184 (9)

From (9) the absolute value of allowable
maximum velocity 2 (v) of each joint j at some
v €[0,1] is determined as follows.

uP**—sgn(h,(@(N))e @),
(@) |

g =1ad]

(10a)

lad
i (7)

1>

(10b)

Also the absolute value of allowable max1mum
velocity q of each joint j between q and q
is obtained as follows.

[ =minld ()], (11a)
Y
__lagl (11b)
max t;; (7)
Y

Thus the optunal subtravelhng time tJ of
joint j between q* and q +1 is

[Og

fajl

=max t;; (7) . (12)
¥

*__
tiy = s

Because all n joints must reach the destination
point g*+1 simultaneously, the desired optimal
subtravelling time ti* between any q' and q1
is determined as follows.

tF=max t,},
=max {max t;; (7))}, (13a)
i Y
—=max {max t;; (7)} . (13b)
Y i

Thus ti* determined by (13) is the optimal
subtravelling time during which all n joints can
travel with maximum velocities between q
and q +1 without violating the input torque
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constraints. A simple and efficient algorithm
to find this ti* using (13b) is summarized in
Algorithm 1.

Algorithm 1 ©

Step1l. Choose dy(€1) and set y=0 and
=20
t -

Step2. If y>1, t*=t and Stop.
Otherwise compute q(y) by (2)
Step 3. Compute t;,(7), for j=1,2,-,n

by using(8) and find the maximum
valie tmax If tmax>t, set
t=tmax and go to Step 4.
Otherwise continue.

Step4. Sety=7+dy and go to Step2.

M. Determination of Minimum Transition
Time

Linear interpolations of intermediate points
in the joint space usually yield discontinuity
in the joint velocity of adjacent segments (cf.,
Fig. 2), ie., the vector of joint velocity of
segment i-1 is not the same as that of segment
i. To satisfy the continuity of the vectors of
joint position and velocity at transition points,
it is necessary to construct new joint trajec-
tories during transition from segment i-1 to
segment i. Paul'[6] and Taylor [8] proposed
a symmetric transition, where transition starts
at t(ql)- 7; and ends at t (ql)+ 7;. The transi-
tion time 2 T i is usually determined as the time
required to accelerate from maximum negative
velocities to maximum positive velocities. With
this determmatlon of 7 the transition points
q}and ql, are specified as follows
(14)

Ty _
@=q~ ¢ @—d™),

l i+1 ___

g,=q+ (" —q). (15)
Then quadratic polynomials are used to
satisfy the boundary conditions (joint positions
and velocities) at g and ql. In this approach,
as Brady [2] has pointed out, there is a possi-
bility that 7, becomes larger than t, ; or t;
This yields significant deviations from the
desired linear joint motions. A possible way to
overcome this difficulty and to determine the
minimum transition time subject to input

torque constraints is explained in the following,
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Segment i

t(q') T - t
b—q'Jﬂ-'—'l—d

Fig.2. Symmetric Transition.

Referring to Fig. 3, the transition points qla
and qf., are prespecified as follows.

dy=q'—k(@—q™), (16a)

ds=q'+tk(g"'—4q"), (16b)

where the scalar k (<< 1) is selected to yield
a small transition interval. It is to be noted
that only qi and qEI are prespecified at the
first and the last transitions, respectively. It
is assumed that t* (i = 1,2, ..., N-1) is already
determmed from Algorlthm 1 by replacing
q 2hd q with q,5 and qc,+ 1 respectively.
For convenience the superscript * of t* will
be omitted in the following,

The velocity boundary conditions to be
satisfied at the ith-transition are as follows,

L {de—dlsh)
q = T »

“ tiot

(17a)

Qﬁ)

. ( i+1__
de=

ty

(17b)

q(t)

R R e e

——
i- thtransition

oLt ¢
HTT -

Fig. 3. New Determination of Transition. Here

- 1
q'= % (q'+qp) andq"= 5 (gotq").



On Minimum Time Joint-Trajectory Planning for the Cartesian Straight Line Motion of Industrial Robot 25

Since this transition is not symmetric and
there are four sets of boundary conditions
(16a, 16b, 17a, and 17b) to be met at each
transition, cubic polynomials are usually
selected as the associated joint-trajectories.
However, quadratic polynomials are chosen
here in, because in general these polynomials
result in much smaller transition time than the
cubic polynomials. For this reason the ith-
transition is decomposed into two different
transition§ of Tr A and Tr B, where two
different constant accelerations are applied,
respectively.

Referring to Fig. 3, the joint positions,
velocities and accelerations at Tr A are establi-
shed using the boundary conditions at qf, and
the associated continuity conditions at point
n'. The 0! is a floating point which is on both
Tr A and Tr B and obtained by substituting
YA = 1 in (18) (Or YB = © in (21). The
resulting joint-trajectories for this portion of
transition are as follows.

2 g,
(18)

aln) = {% (o)~ 5 Bata) by, (19)

Q0 =T i B Gat &)

Gy = (Qa Q) — (3Qa+q;3) 20)

Here 7,€(0, 1) isdefined as
Nl @e ) /e

Similarly the joint positions, velocities and
accelerations at Tr B are obtained as follows.

q () =14 [% —ds) — 5 (qa+qa)+i(qa+3qa)1
+ola o) + 2 Gl + & (),
@1)
a0 = G a+ 2 (@t 38— 5 [t ),
22)
G0 = 75 (@) + 5 (36, (23)

Here 7€ {0, 1] is defined as
7s=“’—ﬁ (271+Tt+t1)'/fl-
=1

It can be seen from (18) and (21) that the
joint positions are linearly proportional to 7j
at some fixed v, .g € [0,1]. The correspond-
ing joint positions, velocities and accelerations
at the first and the last transitions are easily
determined from these equations by setting qg
and f]iq to zero.

. In order to prevent excessive deviation of
'r)1 from ql, it is necessary to find ?i which
minimizes the following error function.

2\ d—7l, (24a)

— § 1 i 1 Ti.g o

=llg'— 5 (at Q) — T (ge—a) I, (24b)
where || - ||' is the Euclidien norm of (-). Itis

to be noted that q° and q° in (24b) are
replaced with &1 = (q1 +qﬂl)gnd aq =(q§ +
qN), respectively, Clearly el=o0 implies 7'
perfectly matched to ql.

Introducing the following short-hand not-
ation,

63 L d— 5 (dta, (25a)

oy & i (G5—3as), (25b)

then (24b) can be rearranged as follows.

— {3 (Bai— BT ) ©6)

=1

Here Sq and 8q are the j-th components of
8q' and 5q respectively. To find ‘l' differ-
entiating e! with respect to ?i yields,

35 (00))* 7~ 256054,
=5 : @7
{2 (9q—dal o)t V2

a \!
aTi

By setting 9e' /3. =0, we can find 7;as

follows.
69,64
T= . (28)
2. (89))*

In order to avoid the excessive deviations of
(18) and (21) from ql, 7, can be selected as a
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transition time. But there is no guarantee that
this ?i can satisfy the input torque constraints.
In order words, when the manipulator makes
transition at Tr A and Tr B for 7; the input
torques for the trajectories can meet or violate
the corresponding constraints.  Even if ?1-
meets the above constraints, one can not
ascertain that 1 i is a desirable transition time
from the point of view of minimum time,
because there may exist smaller transition
times than 7;. Thus an approach to determine
transition time z"{, which is desirable from both
the trajectory deviation and the minimum
time aspects, is developed subsequently.

It can be seen from (18), (19) and (20) (or
(21), (22)and (23)) that q at some Yaor B €
[0,1] is linearly proportional to 5 and ¢ and
q are proportional to z:1 and T"iz, respectively.
If the transition time and the transition interval
are sufficiently small, the variations of q with
respect to 7; may be ignored with compared
to those of q and q. Thus the variation of
input torques with respect to 7; will be domin-
ated by those of the q and q. Consequently,
it may be assumed that the input torques at
the small transition interval are proportional
to O (til). With this assumption, a criterion
to determine T; is established as follows.
Criterion:

(a) If 7, meets input torque constraints at
Tr A and Tr B, a minimum transition
time %, (<7,) subject to the input torque

and ¥
T=wit+ (1—w) 1.

Here w € (0,1) is a weighting factor to

constraints is to be found

is determined as
represent relative importance between
the trajectory deviation and the minimum

time aspects.

E

If 7, violates input torque constraints at

Tr A or Tr B, a minimum transition

time # (>7,) isto be determined and

#, becomes ¥

For this determinat.ion, a method to find %i
with 7; as an initial value is developed. The
initial step of this method is to determine
whether the input torques at Tr A and Tr B for
the transition time 7, violate the corresponding

i
constraints or not. If the constraints are met

at Tr A and Tr B, an allowable minimum.
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transition time rp( <7 ; ) at the initial point
('yA= O in (18)) of Tr A is determined by
backward search method with T; as an initial
value. Then this Ty is examind from YAor B-
0to Ypp = 1at Tr A and Tr B. Whenever the
constraints are violated, Ty will be increased to
meet the constraints by  forward search
method. These two methods will be detailed
later. Finally Ty at end point (’)‘B=1 in(21))of
Tr B will be minimmum time. Meanwhile, if the
input torques for Ty violate the corresponding
constraints at some point of Tr A or Tr B, the
allowable minimum transiton time 7 T
at this point is determined by forward search
method with ?i as an initial value, Then 7y is
examined from the point (where the constraints
are violated) to the end point ('yB =1in (21)) of
Tr B. Whenever the constraints are violated,
L") will be increased to meet the constraints by
forward search method. Ty at the end point of
Tr B will be f'i. The forward and the backward
search methods, which are based on the well-
known binary search methods [9], are detailed
in the following,

FORWARD SEARCH METHOD :
Stepl. Choosee (<<1) and m(>>>1). Determine

an initial value 7, and compute dr as
z
dr=T:— . Comment : u,(r) denotes the

input torque of joint j at some  fixed
Yaors € (0,1) of Tr A or Tr B, which
is computed by (1) and (18) through 20 at
Tr A and by (1) and (1) through @23 at Tr
B with a transition time z.

Compute u,{ra), u, (zs+dz) and &()
| v, (re) —u, (ze+dr) |. Repeat this step

Step?2.

for j=1,2,---,n.

If |u,(ze) | >u™®™, computedu(j)=

lu,(z) | —uP™ and ¢() _ Au()
oG -

Otherwise ¢ (j) =0. Repeat this step for

Step3.

i=L2 -, n

Step4. Find ¢,m=m]ax ¢G).

Step5. Set 75= 7ot ¢max dr and compute u, (74
for j=1,2,,n If |u,(zg | <u™™* for
all j, go to Step6. Otherwise repeat this

step with 7,=17,
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Stepb.

Step7.

Compute 1,= *(i’:;‘i) and ufty) forj=

L2, n Hlu(ry | <u™* for all j,go
to Step7. Otherwise repeat this step
With Ta= Ty

If (™ — | u,(7y) [) <e for some j, set
T,=17y and stop. Otherwise go to Step

6 with 7,= 1.

BACKWARD SEARCH METHOD :

Stepl.

Step?2.

Step3.

Stepd.
Stepb.

Stepb.

Step7.

Choosee (< <1) and m (>>1).Deter-
mine an inital value 7, arv compute dr
as dr= La .

m

Compute u,(za), u,(r,—dr) and &()=
| u,(re—dr) —u, (z4) |. Repeat this step
for 1=1,2, -, n.

Compute Au(j) =uP™>— |u, (o) | and
¢'(j)=A;((jj)) . Repeat this step for j—
Lz’...' n.

Find ¢min=min ¢(j).
i

Set T4~ 7o ¢Ymin dr and compute u,(zg)
for j=1,2,,n. If {u,(zs) | 2uP*™ for
some j, go to Step 6. Otherwise repeat

this step with r,=1,

(zat 70)

Compute 7,= and u,(ty) forj=

1,2, 0 If {u(ry) | <u™ for all
i» go to Step 7. Otherwise repeat this
step with 7= 1.

If (U — | u,(ry,) |) <e for some j, set
Tp=7y and stop. Otherwise go to

Step 6 with r,=1,.

Using these forward and backward search me-

thods and 7; as an initial value, the desired

transition time z¥ is obtained as follows.

Algorithm 2 :

Stepl.

Step2.

Choose dy and w. Set 7,=0, 7,=0,
k=1 and Z=1. Compute 7; by (28. Com-
ments . 7, and 7, denote 7, and 7,
respectively;and Z=0 and Z=1 denote
Criterion (a) and (b), respectively.

If %<1, compute u, (7)) for j=1,2, -,

n and go to Step4. Otherwise continue.

Step3. If k=1, set k=k+1 and go to Step 2.
Otherwise set Z=10 and k==1 and find
7, by backward search method with
=7, at 7%=0 and go to Stepb.

Stepd. If [u, (7)) | <u™ for all j, set %= N
+dy and go to Step 2. Otherwise find
Tn by forward search method with 7=
7, and continue.

Step5. Set n=7%tdy. If n=<1, go to Stepb.
Otherwise go to Step7.

Step6. Compute u, (r,) for j=1,2, -, n. If{y,
(rn) | <u™®* for all j, goto Step 5.
Otherwise increase 1, by forward search
method with 7,~7, and go to Step5.

Step7. If k=1, set k=k+1 and %=0 and go
to Step 6. Otherwise set 7,—=1, and
continue.

Step8. If Z=1, set zF=1%, and stop. Other-

wise d=w t,+ (1—w) 7, and stop.

Remark 1 :
Summarizing all the results discussed in Sec-
tions 2 and 3, the procedure to determine the
minimum subtravelling times (t¥,i=1,2,---,N— 1)
and the desired transition times (¢f, i=1,2, -,
N) is briefly described as follows, provided that
all the intermediate points are already determined.
Stepl. Choosee, k, m, w, dy and uM®* (=1, 2
2’ N n).

Step2. Determine g, and g5 (i=1,2,+, n) by
(16a) and (16D).

Step3. Find t¥(i=1,2,+-,n—1) between g5 and
qs"' by Algorithm 1.

Stepd. Find ¥ (i=1,2, -, n) between q> and b
by Algorithm 2

IV. Computer Simulations

A Fortran program has been written on the
Univac 1100 computer to simulate the pro-
posed schemes for a PUMA *Unimation Inc.,
U.S.A) 500 series manipulator. For simplicity
of the computation, only the first three joints
of the manipulator are considered. Also seven
intermediate points (two end points and five
intermediate points) are selected, whose joint
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values are tabulated in Table 1. The input
torque constraints u™?¥ (j=1,2,3) and a scalar
value k to specify the transitions points q1 and
q1 are chosen as 100 Nm and 0.2, respectively.
Also the weighting factor at each transition is
set to one because we put our emphasis on the
minimum time aspect.

Table1. Joint Positions (rad) at Each Point.

POINTS
¢ | a | & | d ¢ | o | d
Joint 1 10.4]10.8 (1.2 |1.6(2.0(2.4]2.8
Joint 2 (0.5]0.8371.16] 1.5 | 1.8 }2.17| 2.5
Joint 310.2(0.57/0.93] 1.3 ]1.6]2.03] 2.4

Table2. Minimum Subtravelling and Transition
Times (sec).

Transition time{r;) | Subtravelling time (ti)
i=1 0. 0902 0. 0707
2 0. 0482 0. 0706
3 0. 0440 0. 0626
4 0. 0362 0. 0483
5 0. 0232 0. 0344
6 0. 0222 0. 0302
L 7 0. 0659

Table 2. shows the minimum subtravelling
and the transition times determined from our
proposed schemes. It can be seen from Table 2
that the initial and the last transition times are
greater than any other time. This result stems
from the fact that the initial and the final
velocities are zero and the velocity differences
between the corresponding transition points
are relatively large. Fig. 4. shows the joint
positions consist of linear and quadratic
polynomials.

It is to be noted that the deviations at each
transition can be adjusted by selecting a proper
weighting factor. Also, when the manipulator
moves along the specified joint-trajectories with
the determined subtravelling and transition
times, the input torque applied at each joint
is plotted in Fig. 5. From this figure it can be
seen that at least one of three joints nearly
utilizes its maximum torque during each move-
ment,
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Fig. 4. Joint Positions.
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Fig. 5. The Input Torque Applied at Each Joint.

V. Conclusions

Recently many researches ([1], [4] , and
[7] about the minimum time joint trajectory
planning have been made. But most of the
works put emphasis on satisfying only the
time-optimality without considering several
important criteria for the trajectory plannings
(i.e., the efficiencies of computations,
execution, visualization and smoothness). One
way to meet these two important issues is to
use the polynomials as the basis functions for
the minimum time joint trajectory planning.

In this paper an approach to achieve a
Cartesian straight line motion based on the
linear approximations in the joint space is
proposed. The proposed joint-trajectories
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consisting of linear and quadratic polynomials
have the following destrabte advantages: (1)
these joint-trajectories are more effective from
the minimum time aspect than any other joint-
trajectories resulted from applications of the
higher-order polynomials; (2) the linear poly-
nomial portion of these joint-trajectories
can greatly reduce the computational burden
resulted from incorporating dynamic equations:
(3) the quadratic polynomial portion (at
each transition) of these joint-trajectories
makes determination of each transition time in-
dependent of the corresponding transition
interval and results in the joint-trajectoreis
with the least deviations from the desired
motion, ’

This paper also propses a method to deter-
mine the minimum subtravelling and transition
times subject to input torque constraints. This
method needs only one computation of
dynamic equations at each point for determin-
ing the minimum subtravelling time., Also
determination of transition time based on
binary search method needs only few iterative
computations of dynamic equations. Thus
this proposed method can effectively deter-
mine the minimum subtravelling and transition
times utilizing the allowable maximum input
torques of the manipulator.
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