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An Intelligence Image Compression System through

Image Understanding
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Abstract

This paper describes an intelligent image compression system called AIIC which is capable
of adjusting image compression ratios ranging from 1:1 to 12,000:1 depending on available
bandwidth. This system utilizes not only conventional image compression algorithms but also
intelligent techniques through understanding image contents to achieve ultra-high compression
ratios. This system was simulated on a micro-computer network,

I. Introduction . .
troduc in the system may be placed into two

categories; conventional and intelligent. The
conventional techniques, which are known as
image coding to preserve overall image fidelity,
yield up to approximately 50:1 compression
ratios [1]. Significantly higher compression
ratios can only be achieved by incorporating
intelligent techniques such as image-content
analysis and temporal compression. Image-
content analysis determines what is in the
scene and where it is. Only information
pertinent to the mission objectives is transm-
itted in the compressed image. That is, import-
ant objects are transmitted with high spatial
resolution and high frame update rate, while

The transmission of images over data-links of
varying channel capacity requires an intelligent
application of image compression techniques.
Since channel capacity can vary from time to
time, a fixed compression ratio cannot be
utilized for all time. The system described
here, called Adjustable Intelligent Image
Compression (AIIC) system, is capable of
adjusting image compression ratios ranging from
1:1 to 12,000:1 depending on available
bandwidth.

Image compression techniques incorporated

*ULErE, WP SR less important objects, such as background, are
(Dept. of Computer Science, KAIST) transmitted in a highly compressed for.n and
BT D 19874 5 H 1914 slow update rate. Temporal compression is
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a technique designed to gain additional com-
pression in multiple frame transmission. Here,

new frame is compared with old frames and
only the “new” information is transmitted.
The AIIC system achieves various levels of
compression ratios by combining intelligent
techniques with conventional techniques.

The system has been developed by utilizing
rule-based approach [2] for flexible system
control. The algorithms used for image content
analysis include well-established segmentation
[3,4,5], feature extractions and classification
algorithms for the object detection and iden-
tification [6]}, and line finding [7}, and
symbolic scenematching algorithms for back-
ground description and temporal compression.
The AIIC system was implemented on a dis-
tributed micro-computer network consisting of
several Z-80 based processors which communi-
cated by message passing through the con-
troller’s blackboard. Design and implement-
ation of the AIIC system, together with the
operations of the system component modules,
are presented in this paper.

II. Image-compression Strategies

The AIIC system provides 14 options of
compression ratios ranging from 1:1 to
12,000:1. A specified bandwidth compression
ratio is achieved by a combination of image
compression techniques. Some of these
techniques can be categorized as intelligent
because scene content is derived in order to
select the compression scheme to used.

For the lowest compression ratios, simple
frame rate reduction and spatial resolution
reduction, are employed in the AIIC system.
Because a sequence of image frames is transm-
itted in a certain time interval, transmitting
only every Nth frames easily achieves N:1
compression. Also, reduction of image resolu-
tion by a factor of M achieves a M:!1 com-
pression.

A transform coding scheme has been used
to yield from 4:1 up to 16:1 compressions
without significant degradation of image
quality. One dimensional 16-point Hadamard
coding scheme [1,3,8] has been employed in
the system. It was determined that two bit-
per-pixel and one and half bit-per-pixel coding
schemes generated acceptably small distortions.
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However, higher ratio compressions, one bit-
per-pixel and half bit-per-pixel coding schemes,
produced too blocky, unacceptable results.

In contrast to the conventional frame rate
and spatial resolution reduction, the idea of
the intelligent compression schemes is to apply
the frame rate reduction and spatial resolution
reduction method non-uniformly over the
image, depending on image content. After
determination of scene content, the assignment
of high resolution target windows and low
resolution background features is determined.
The windows containing important moving
objects are updated more frequently, while the
background less frequently. Levels of various
compression ratios are derived by adjusting
bandwidth reduction parameters. These
parameters include window types and size,
the number of the windows in a frame, updat-
ing rate, spatial resolution, and coding schemes
of window. A typical example of intelligently
compressed image is shown in Fig, 1.

|

1000:1 COMPRESSION

10,000: 1 COMPRESSION

Fig.1. Intelligent image compression.

To achieve even higher ratio compressions,
the background is represented as binary edge
map or a line model. The edge map represents

binary pixel data thresholded from the edge
magnitudes at each pixel location, while the
line model is formed by linking the edge pixels.
Individual line segments are represented by two
endpoints, thereby realizing a very large savings
in bandwidth.
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Temporal compression has been incorpor-
ated to gain large improvements in multiple-
frame transmission. By comparing feature
contents in consecutive frames, the displace-
ment between frames caused by sensor motion
can be determined. This knowledge allows the
system to avoid transmitting background
information which has been sent as a part of

Table 1.

previous frames. By sending only the new in-
formation, and appending it to the old inform-
ation at the receiving station, another large
reduction in bandwidth is achieved. Table 1
shows the combination of compression
techniques for achieving the varying degrees

of bandwidth compression ratios discussed.

Compression ratios.
o BANDW IDTH
VITCH | OMPRESSION COMPRESSION METHOD REM ARKS
POSITION
RATIO
i 1 NO COMPRESSION CONVENTIONAL
BANDWIDTH
2 4 PICTURE REDUDEC TO 256 > 256 COMPRESSION
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3 1 e
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7 £0~500* | SECONDARY WIDNQOW** 2 JFPS | 1.5b-H SECONDARY
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BACKGROUND NOLIENS IFPS | BBIT/LINE
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PRIORITY WINDOW 209 7.5FPS | 1b-H
1l 700 BACKGROUND WOLINES 1FPS | %BIT/LINE
TARGET DESCRIPTION I20CHARACTERS /sec
PRIORITY WINDOW 2R IFPS 1
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TARGET DESCRIPTION 200 | see
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M. System Overview

1. Blackboard system architecture

The AIIC system is a complex, distributed
image understanding system which takes a
temporal sequence of digitized gray level images
as input and produces a sequences of com-
pressed images and/or symbolic descriptions of
interesting objects in the scene as output. The
AIIC system consists of a number of in-
dependent special purpose modules (SPMs)
which perform specific tasks under control of
an executive controller. The controller is con-
figured as a blackboard system in that system
control knowledge, such as how and when to
invoke SPMs, is encoded in the form of pro-
duction rules. It is also the executive con-
troller’s function to determine a proper image-
compression strategy to achieve a required
compression ratio. The status of the system
at any time is represented on the controller’s
blackboard. The controller monitors the state
of processing and invokes appropriate SPMs
when certain conditions are met. The execu-
tion of a SPM causes various functions to be
performed and produces data to be added to
the blackboard.

The system controller was implemented in
a production system language called HAPS,
developed at the Hughes Research Laboratories
[91. HAPS, a general purpose tool for con-
structing forward-chaining mechanism by the
use of variables in conjunction with match
restriction capability. A version of HAPS was
implemented on a Z-80 processor which serves
as a node in the micro-computer network.

One major advantage of the blackboard
approach is its high modularity. The system
may have different internal structures and may
be written in different programming languages.
However, they communicate with each other
by means of message passing between the
SPMs. Thus, internal properties of a SPM are
transparent to the rest of the system. In our
current implementation, the SPMs were written
in various programming languages including
LISP, C, assembler language, and HAPS pro-
duction system language.

There are two dominant data flow paths in
the AIIC system, as shown in the data flow

diagram of Fig. 2. One path, which appears
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in the upper portion of the diagram, is for
object detection and classification; the other
path, which appears in the lower portion of the
diagram, is for background description and
temporal compression. For the upper path,
the object detection and identification algori-
thms for an auto-cuer program [6] are utilized.
In addition to the data-driven bottom-up
approach, structural and contexual models
were incorporated in the model-driven, top-
down approach. For the lower path, the line-
finder module produces line models of the
background of sensed images, and the line
models of two consecutive images are matched,
and a displacement vector calculated for use
in temporal compression.

(964)

Fig.2.

AlIC data flow.

2. Object detection and classification

The image understanding algorithm
employed in the current implementation of the
AIIC system utilizes a two-level approach to
automatic object detection and classification.
A low-devel processor examines the full-frame
image and selects points of interest where
objects are likely to be located. These points
of interest are then sent to the high-level
processor for further, and more detailed,
examination in window regions centered at the
interest points. Here, object segmentation and
feature extraction take place, and feature
vectors are sent to a rule-based classifier for
identification of object type. An overview of
the object detection and classification process
is given by the block diagram in Fig.3

In determining the low-level points of in-
terest, a few easily calculated statistical para-
meters of the image are considered. The motiv-
ation here is to form, by a proper choice of
low-evel parameters, a linear discriminant of
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Fig.3. Object detection and classification.

these parameters so that object areas are more
likely to possess high discriminant values. By
appropriately thresholding the discriminant at
this stage, a small number of interest points are
produced and passed on to the high-level stage
for further processing. The remaining, below
threshold, points are excluded from further
consideration and processing. The objective of
the low-level processor is to locate as many of
the object areas as possible using interest
points, while discarding as many areas of the
image as possible from complex and time-
consuming computations by the high-level
processor.

A window is centered at each interest point
in the image, and object segmentation takes
place to extract objects from the background.
It is the function of the segmentation algorithm
to separate those areas believed to be interior
to an object from the background. A con-
volution algorithm suggested by Nevatia [7] is
used to compute the edge values of the pixel
within the window, A threshold is applied to
keep only the dominant edges within the win-
Wow. Then, interior point determination takes
place. A provisional interior point is defined as
a pixel that is surrounded in six of eight direc-
tions by above-threshold edge points, Because
of the coarseness of the interior pont determin-
ation, convex portions of objects tend to be
filled in; the same is true for regions between
two objects in close proximity to each other.
To overcome this drawback, a maximum
likelihood assignment of interior versus ex-
terior points is carried out using intensity
histograms of the provisional interior and
exterior points. This assignment eliminates the
shadow artifacts and gives a true representation

(965)

An Intelligence Image Compression System through Image Understanding

of object’s sithouette. Smoothing and gap-
filling algorithms are applied to obtain smooth
boundary lines. For each segmented object,
feature values such as area, average intensity
are measured and sent to classifier for object
recognition.

The classifier is a rule-based system that
distinguishes one class from the other. Class-
ification rules encode relationships between
object classes and their feature characteristics in
bottom-up fashion in the form of “IF features
satisfy certain conditions THEN the object
belongs to a certain class.”” Although contextual
information as well as structural model inform-
ation is incorporated with the classifier, the
primary classification knowledge has been
extracted from the statistical model which
has been trained on a set of sample images.
The contextual and structural information
is used only for subsequent refinement, con-
firmation or rejectoin, of initial classifications.
An advantage of having the classifier configured
as a rule-based system is the synergic integr-
ation of all the available classification knowlege
into an unified format. Although statistical
classification knowledge may be encoded and
utilized more efficiently in different formats
(such as decision tree), these formats are not
suited for contextual and structural knowledge
representation.

3. Edge map and line model generation

In order to achieve the required high band-
width reductions, the information content
of a scene must be represented in a more
symbolic form, rather than the original
intensity representation. The AIIC system
approaches this problem by representing the
background information as either an edge map
or a line model. To achieve the intermediate
level compression ratios (around 1000:1
compression), edge maps are constructed for
the background by thresholding the edge
magnitude produced by convolving the image
with a series of directionally weighted masks.
The resultant edge picture is transmitted at-
reduced resolution at varying frame rates. This
not only provides significant bandwidth reduc-
tion, but also preserves key features (such as
roads and terrain features) which provide an
understanding of the background scene
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A further bandwidth reduction has been
achieved by line model generation. Line
segments are identified by a line-finding
algorithm and transmitted as two end points,
producing a very large savings in bandwidth.
The AIIC system employs the Nevatia-Babu
line-finding algorithm [7] in that edge pixels
are thinned and linked in a heuristic way.
The number of generated line segments is
dependent on two thresholds: edge magnitude
threshold and line length threshold. Increasing
these two thresholds produces less line
segments, and accordingly high ratio compress-
ions can be achieved (Fig 4.)
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Fig.4. Examples of line modeling.

4. Temporal compression

While the line finding scheme for background
representation has provided a significant
improvement in single-frame bandwidth reduc-
tion, temporal compression has been imple-
mented to gain even larger improvements in
multiple-frame transmissions. The key to
successful temporal compression lies in the
ability to accurately determine the global
offset between two images (represented by line
models). In general, this offset is determined
by locating instances of certain invariant image
features, and computing the displacement
between these features. In the AIIC system,
near vertex feature, which is formed by line
pairs with nearly intersecting end points, has
been explored as a possible basis for scene
matching among many candidates. The near
vertex matching requires a complex algorithm
involving the length of segments, their orient-
ation, the ratio of segments forming the vertex,

(966)
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and the included angles. Since this kind of
features is generally consistent between images
and they do not occur many times, matching
near vertices yields a robust, reliable, and fast
result. Having determined the offset between
two consecutive images by matching near
vertex features, the final step is to actually
perform the temporal compression and transmit
the compressed data. The set of edges which
extends outsides of the portion of the image
already sent is determined and transmitted.

IV. Micro-Computer Network

The AIIC system has been implemented on
a distributed micro-computer network. By its
nature, this network approach produced a
more modular and flexible design. Each of
these independent processors communicates
with the other processors via simple messages
through the network hub machine. Separating
the tasks onto the individual machines provides
the desired modularity and the simple message-
passing communications between them provide
a high degree of flexibility.

The network developed for the prototype
AIIC system consists of six separate Z-80
processors (Fig. 5). Using the network message
passing system, any of these machines can send
a message packet to any other machine via RS-
232 data lines. This asynchronous message
system allows easy modification and integration
of the various components of the system, even
to a level where additional processors and
modules could be added without altering the
network structure or any the existing nodes.

For the network controller, a modified
M operating system was used. Any input

TRS-80
TLC LISP

YRS-80
TLC LISP TRS-80
APS- 1 TLC- us?

TRSN

SYSTEM
CONTROLLER

RN //m

NETWORK
MESSAGE
DISPLAY

AUYO CUEN CLASIFIER MAYCNER

TRS-80
TLC LISP

TRANSMITTER

Fig.5.

NETWORK HU8
{MESSAGE PASSING)
{RECE; VEN EMULATION)

00 SYSTEM

AIIC micro-computer distributed
network.
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signal appearing on the machine’s RS-232
port would be handled by CP/M as if it were
typed on the keyboard and similarly, any
output directed to the video display would
simultaneously appear as an output on the RS-
232 port. The overall network which links
five micro-computers in a radial network
configuration was built around the hub
machine. Each network node communicates
with the use of the network hub by passing
formatted messages made up of standard
ASCII characters. The message passing
sequence is initiated when a network node
machine type a message on its screen. The
modified CP/M would essentially echo this
message on the RS-232 output data lines, gener-
ating an interrupt at the network hub. The
interrupt service routine then would examine
the interrupt flag, determining source of the
interrupt, and get the character from the
source. This character would then be stored in
the input buffer with identification of the
source. If this character happens to be an end-
of-line character, the message is decoded to
determine the destination node for the message.
Then the message is placed in the transmit
buffer for the destination node, and finally
appeared on the machine as if typed at the
keyboard. These service routines are illustrated
in Fig. 6.

V. Conclusion

An intelligent image compression system has
been described which is capable of adjusting
compression ratios from 1:1 to 12,000:1
depeding on the restrictions placed on band-
width capacity. The system achieves high ratio
compressions by incorporating image under-
standing techniques, i.e., image-content analysis
is performed on the original image and only
information pertinent to a given mission
objective is transmitted. The AIIC system is
organized as a blackboard system in which
several special purpose modules are processed
co-operatively under the control of a rule-based
executive controller. The system has been
implemented on a distributed micro-computer
network in that each special purpose module
is processed in parallel with other modules.
The modules communicate by passing messages
through the network hub machine. In this

An Intelligence Image Compression System through Image Understanding
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(b)
Fig.6. (a) Network message passing and
receiver emulation,

{b) Network interrupt service.

fashion, the system achieves a high degree of
modularity and flexibility.
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