WX 87-24-6-18

MultiRing An Efficient Hardware Accelerator

for Design Rule Checking
(HElg AATAAALE 3 a7zl stego] 7147])

BE BB F o8
(Kil-Su Eo and Chong-Min Kyung)

- 5]

E e e Mg xe goint fAXE kAl VLSI e AAFA AL} A, A ld
¢ 2hdle okgt dAA el 849 + v sEdoft=el MultiRingS 47Hgch :Li-l, A =
o] FAL M7tz &g d|Fol4 3+l Hosteh MultiRingAbele] &1 %2 A=, ring memory, %
Y ooen wddagst adgoe|ch & smelel] 44% dataEe columntE wal el 7t
gAML Weyddarctel Hale) 284 booleansd 4k (AND, OR, NOT, COPY), %3 E}DH 7k} 1a1
3 1/0%35E HAlE wh9E S dsi), MultiRinge AAITFA o] wAolv) sdeiae el 7o) of

A& 7tA ek MultiRing®] sltesglo]+zel A4S 2 £ZESgo] Algalo]d e % sho
MultiRing®l A &% 528 Fgsidch

Abstract

We propose a hardware architecture called MultiRing which is applicable for various geome-
trical operations on rectilinear objects such as design rule checking in VLSI layout and many
image processing operations including noise suppression and contour extraction. It has both
a fast execution speed and extremely high flexibility. The whole architecture is mainly divided
into four parts ; I/O between host and MultiRing, ring memory, linear processor array and
instruction decoder. Data transmission between host and MultiRing is bit serial thereby
reducing the bandwidth requirement for the channel and the number of external pins, while
each row data in the bit map stored in ring memory is processed in the corresponding processor
in full parallelism. Each processor is simultaneously configured by the instruction decoder/
controoler to perform one of the 16 basic instructions such as Boolean (AND, OR, NOT, and
Copy), geometrical (Expand and Shrink), and I/O operations each ring cycle, which gives
MultiRing maximal flexibility in terms of design rule change or the instruction set enhance-
ment. Correct functional behavior of MultiRing was confirmed by successfully running a
software simulator having one-to-one structural correspondence to the MultiRing hardware.

I. Introduction

111

TERR, WEHBRAL BY 3 BT LA Complexities and the required short turn-
(Dept. of Elec. Eng., KAIST) around of the recent VLSI circuits definitely
BSHT 19864 11H 240 require a very fast an flexible (in terms of

(1040)

112

process parameter change) tools for design
and verification. Conventional software appro-
aches for various design automation problems
on the serial machines already began to fall
short of meeting this demand. Several special
purpose hardware architectures tailored to
processing two-dimensional geometrical
problems including Design Rule Checking
(DRC) in IC layout and wire routing have been
reported to relieve the situation by exploiting
hardware parallelism., [1], [2], [3] In this
paper, we like to classify the hardware archit-
ectures for 2-D geometry processing reported
so far into the following three categories
according to the total number of unit
processors involved for a 2-dimensional n x n
data plane; 2-D class has O(n?) Processors,
while 1-D and O-D class has O(nl) and O(n®)
processors, repectively,

Cytocomputer reported in [3] belongs to
the O-dimensional class and is schematically
shown in Fig, 1. Bit map data representing the
2-D geometry space is scanned out one pixel
by one in row-major order and processed by
a pipelined processor chain where each
processor executes one of the basic operations
into which the desired instruction is
decomposed. Each processor in the pipeline
stage itself consists of a subarray processor
implemented as combinational logic circuitry
and a shift register which has a length of at
least two rows of the bit map plane to perform
the neighborhood operations in the vertical
direction as well as in the horizontal direction,
In this architecture, however, the complexity
of each processor becomes excessive because
each processor has to contain a shift register
array whose length is proportional to (length
of two rows of the bit map plane) x (number

BITMAP DATA

Pipelined Processors

Fig. 1. O-dimensional image processing scheme
having O(no) processing elements
(PE’s).

1987%F 11 BEf IBEHKLE # 24 % H 6 ¥

of layers). Moreover, the structure of the unit
processor and the number of stages in the
processor pipeline is tied up to the specific bit
map size and the specific set of operations.
Also, its time complexity is 0(um) for n x m
bit map planes which is the slowest among the
three classes.

On the other hand, there are reported
several architectures [1], [2] belonging to the
two-dimensional class which consists of two-
dimensional array of the unit processor cells.
[1] describes an array processor for two
dimensional bit map data where the cells
called SAM cell are linked in a two-dimensional
mesh-connected network. Another example of
this scheme is an interconnected array of
microcomputers to solve the wire routing
problem described in {2]. These schemes need
minimal external data flow because bit data
in each cell are directly accessible from its
neighbors, resulting in high speed performance.
But the complexity of this scheme is still pro-
hibitive even with the present VLSI technology
since the size of the bit map data could easily
be more than 1000 x 1000 in VLSI layout.
However, the time complexity is minimal,
ie., 0(1).

As a compromise between the slow speed
of the 0-D class and the excessive hardware
complexity of the 2-D class, we considered a
1-D class architecture as shown in Fig, 2, Each
stage in this processor pipeline is a replica of
the unit processor in the 0-D scheme as many
times as the number of rows except that it
needs no shift register array, Its time com-
plexity is 0(n). However, since the number of
stages of the processor pipelin is fixed, this
architecture is not flexible for such changes
in design rule parameter or instruction set

Pipelined Processors

—

BITMAP DATA

(nx m)

a

Fig. 2. 1-dimensional image processing scheme
having O(nl) PE’s.

(1041)

MultiRing An Efficient Hardware Accelerator for Design Rule Checking 113

enhancement, The property comparison
between these schemes is presented in
Table 1.

Table 1, Comparison of 4 schemes.

Schemes Circuits Speed Flexibility
0-D simple low tow
1-D (pipeline) middle middle low
1-D (MultiRing) simple middle high
2-D Complex high high

II. MultiRing-Hardware accelerator for DRC
1. Hardware architecture

An imaginary architecture for describing the
operation of the proposed DRC hardware
-MultiRing-is shown in Fig. 3. It consists of
a multiple ring memory which corresponds
to a foldback of the bit map plane in the 1-D
class at its ends, and one stage of linear pro-
cessor array. The bit map data stored in the
ring memory circles around until necessary
while the linear processor array executes a
sequence of basic instructions which are
externally selectable by a controller. The
ring meory can be implemented as shift register
array, as shown in Fig. 4. A possible candidate
is dynamic shift register with a two-phase
nonoverlapping clock where each memory cell
consisting of two inverters and two pass tran-
sistors requires 8 transistors in CMOS
technology and 6 in NMOS technology. (See
Fig. 5)

A block diagram of the MultiRing is shown
in Fig. 6. It consists of four parts, i.e., 1/O,
ring memory, linear processor array and instruc-
tion decoder. The I/O part handles the data
transfer from and to host in serial fashion, while
the data transfer between I/O and ring memory
is in parallel fashion. Ring memory consists
of as many planes as the number of layers
involved-four, in this example-each of which is
independently connected with [/O and
processor array through the interconnection
network., The processor array executes the
basic intra-layer or inter-layer DRC instructions
according to the command of the controller
and updates the bit map data being circulated

Muiltiring memory

P g\

\AJ/

Fig. 3. An imaginary 1-Dimensional image pr-
cessing scheme using ring memory.

[TTTITTI LI ITIT]
CTHII]HIIIHIITD
C_—:IHIIHIIIIHH

I[llllllhlllllll

LITTIITITTITITTT
CtLLJIIIIlIHIIH

Fig. 4. Ring memory using shift
array.

P ¢2 ¢2

Fig. 5. Ring memory implemented with dy-
namic shift registers using 2-phase
nonverlapping clocks.

register

in the ring memory. The instructions from the
host are decoded by the instruction decoder
into the precise control signals which then
control the I/O and processor array one by one
each cycle. Fig. 7 describes one slice of the
MultiRing where the number of inputs or
outputs is the number of mask layers, which is
4 in our example,

(1042)

114

Ring Memory

Processor

erconnection network

|
Proc
coniro!

170 centra

T

170 (serig
Cata 170 (serigl Instruction

from host

T Decoder
(-
Fig. 6. Block diagram of multiRing. The

processor part updates the bit map
data in the ring memory.

170 Ring Memory Processor

Fig. 7. One slice of MultiRing. The processor
and I/O receive four bits from ring
memory and return one of them up-
dated while other three bits un-

changed.

2. Circuitry of unit processor

Fig. 8 shows a block diagram of the unit
processor in the linear processor array which
consists of three switches (4x1-SW, 4x2-SW,
2x1 SW) and three submodules (detection-
resizing module, Boolean module and
output stage). 4x1-SW is a simple switch to
select one layer out of the 4 input layers in
the ring memory, We let Ct denote the selected
pixel data in the current unit processor at time
point t (t = -, 0, + signifies past, present and
future, respectively)

The output of 4 x 1 switch will be stored in
a 3 stage shift register as C, C°, and ct con-
structing 3 x 3 window with those from the
upper unit processor (U~ UO, U+) and those
from the lower unit processor (L, LO, L+).
This 3 x 3 window becomes the data for the
detection and resizing operations. On the other
hand, C1, C2, C3, and C4 are also fed to
4x2-SW, where two (Bl, B2) of them are
selected as the inputs of the Boolean module
which executes various Boolean operations such

19874 11 BFLBEHRLE H 24 % H 6 5%

Unit Processor Cop Vs

1
1
I
\
! ! |
-.—t— |
J Resizing |
T Detection ' |
From ring 4 ’—1‘ P!
memory | L ; i :
| .
s b
To ring 1 T R
memory i ‘ 3
-] ol
:
“ Qutput Lﬁ; R
“ stage ¢ W ’—J |
AT i |

Fig. 8. Block diagram of the unit processor.
number of input and output signals are
four respectively. The signals (U-, UO,
U+) and (L-, LO, L+) come from the
upper and lower unit processors res-
pectively to construct a 3 X 3 window
with (C-, CO, C+).

as AND, OR, NOT and Copy between layers.
The outputs of the detection-resizing and
Boolean modules are fed to 2x1-SW whose
output is Po. Po is fed to the output stage
either to replace or to be ORed with one of
Cl, C2, C3, and C4. In the output stage,
C1, C2, C3, and C4 are delayed by four clocks
to be in the same phase with Po. The structures
of the unit processors in the uppermost and
lowermost rows must be designed to be
slightly different from the inner ones since
there is only one neighbor unit processor in
these two boundary unit processors.

M. Definitions of basic instructions

The 16 basic instructions of MultiRing,
which are summarized in Table 2, consists of
4 Boolean instructions, 8 resizing instructions,
two detection instructions and two I/O in-
structions. When the bit value updated by the
processor array is loaded back into the ring
memory, two options are available. One is
to write the updated value after clearing the
previous value (write). Another option is to
"write the result of logical ORing between the
new value and the previous one (paint). That
is, mr_f(x,y,1) and mr_f(x,y,0) denote ‘paint’
and ‘write’ mode instructions, respectively,
where mr_f() can be any MultiRing’s basic

(1043)

MultiRing An Efficient Hardware Accelerator for Design Rule Checking 115

instruction with the input vector X and the
destination register y, while the third argument,
1 or 0, determines whether to ‘paint’ or
‘write’.

Table2 . MultiRing’s basic instructions.

Instruction munber of Function description G roup
arguments

mr-AND 4 logical AND
mr-OR 4 logical OR Boolean
mr-NOT 3 logical negation
mr-COPY 3 copy
mr-SHR-NE 3 shrink to North-East
mr-SHR-NW 3 shrink to North-West
mr-SHR-SE 3 shrink to South-East Ceometrical
mr-SHR-SW 3 shrink to South-West
mr- E XP-NE 3 expand to North-East
mr-EXP-NW 3 expand to North-West
mr-EXP-SE 3 expand to South-East
mr-EXP-SW 3 expand to South-West
mr-INDTC 3 interior detection Detection
mr-EXDTC 3 exterior detection
mr-IN 1 write on a layer 10
mr-OUT 1 read a layer to host

1. Boolean instructions

The Boolean instructins that MultiRing can
perform are AND, OR, NOT, and Copy
between interlayers. Following examples show
the usage of those instructions where A, B, C
and D denote the layers.

mr OR(B,C,A,0); /* Store A with OR

(B,C) ¥/
mr AND(A,B,D,0); /* Store D with

AND(A, B)*/

/* Store C with

NOT(A) ¥/

/* Store A with B¥/
/* Store D with

OR (OR(A,B), D)

or , paint D with

OR(A, B)*/

mr NOT (A,C,0);

mr COPY(B*‘A,0);
mr OR (A,B,D,1);

2. Resizing (geometrical) instructions

There are two resizing instructins, ‘Shrink’

(SHR) and ‘Expand’ (EXP). When the
‘Expand’ instruction is executed for each
geometrical primitive, its widths in X and Y
directions are enlarged as much as 1 unit
length, Although the ideal expansion or
shrinkage is the enlargement or shrinkage of
the original pattern by half unit length in
+X, -X +Y, and -Y directions, we classified the
EXP or SHR instructions according to the
options as follows; (See Fig. 9)

Shrink = { SHR_.NE, SHR_.NW, SHR SE,
SHR SW |

Expand = { EXP_NE, EXP_NW, EXP_SE,
EXP_SW. }

Examples:

mr_SHR_SE (A,D,0); /* After shrinking
layer A, move it
half unit length to
south-east direction
and put it on layer
D */

mr_EXP_NW(B,C,1); /* After expanding
layer B, move it half
unit length to north-
west direction and
paint it on layer C

*/

| Sy s gD S
Z

+

(a) (b}

Fig. 9. (a) Ideal expansion in four directions
by half grid length.
(b) Result of one of the four Multi-
Ring expansion instructions, EXP-
NE (Expand Northeast).

3. Detection instructions

Detection instructions are responsible for
searching for the specific pattern in the given
3 X 3 window shown in Fig. 10, and consist
of interior detection (INDTC) and exterior
detection (EXDTC)., These are described using

(1044)

116

oo | u® | u”
c | ¢ ¢
B T

Fig.10. 3 x 3 window showing nine bit values
available to each unit processor; U’s,
C’s and L’s are from the upper neighbor
row, cutrent row and lower neighbor
row, respectively. Superscripts, -, 0 and
+ denote left neighbor column, current
column and right neighbor column in
the ring memory, respectively.

Boolean expressin as follows.

INDTC= . (U°.19 +(C.chH+
w-vtuth+wtruty
eq.(1)

EXDTC = °.((U L) +(C.CH+ (LUt U7

th+.tt 1ot eq.(2)

,where (tilde) denotes complementing,

Fig. 11, Shows four cases in INDTC which
is used to check for the width rule in the 3
x 3 window. The precondition of INDTC is
that CO, the center of 3 X 3 window, should
be 1, which is the first term of eq.(1). Fig. 11
(a) shows 2-A width rule error in the vertical
as well as horizontal direction which is reflected
in the first and second terms within the outer-
most parenthesis (OR term) in eq.(1). Fig.11
(b) corresponds to the third OR-term in eq.(1)
which checks for the width rule error in the
diagonal direction. The fourth OR-term in
eq.(1) is for checking in the other diagonal
direction. No width rule error is reported for
the pattern shown in Fig. 11 (¢) since it
represents a corner of a rectilinear polygon,
The width rule error for the pattern shown in

19874 11 BFIEBEGHRIE F 24 % ¥ 6 %

X X % X

E/Z T D : 0 : Don't Care

Fig.11. Several 3 X 3 window patterns for
INDTC (Interior detection) operations.

Fig. 11 (d), error is not reported at the present
time. Instead, it is to be reported when its
neighbor cells, i.e., left neighbor cell (C) or
lower neighbor cell (LO) becomes the current
cell (CO). Exterior detection instruction,
EXDTC can be explained in a similar fashion
as INDTC except all the Boolean values are
complemented,

Examples:
mr.EXDT(B,D,1); /* Paint the result of exterior
detection of layer B on layer
D. */
mr.INDTC(C,D,0); /* Write the result of in-
terior detdction of layer
C on layer D. */

4. I/O instructions

Data transmissions between MultiRing and
host or display device (eg. CRT) are bit serial
which reduces the bandwidth requirement of
the channel and the number of external pins.
mr_IN() instruction makes MultiRing receive
bit data from host and load them on a specified
layer in the ring memory. mr_OUT() makes
MultiRing send bit data in the specified layer
of the ring memory to host or display devices.

IV. Functional simulations of MultiRing

1. Programming for DRC applications

The design rules described in this paper
were taken from [4]. Compared to any other
hardware architectures, MultiRing is very
flexible against the variations of design rules
since the number of basic operations into which
the required instruction is decomposed does
not affect the hardware architecture.

(1045)

MultiRing An Efficient Hardware Accelerator for Design Rule Checking 117

The application programs running on Multi- Space-rule-check-1(A n)
Ring for DRC in IC layout were written in /* Check n-lambda intra-layer spacing rule for layer A¥/
C language but presented in a simplified form ’
here. The layers 2 and 3 in ring memory are mr-EXDTC(A,3,0); /* Check 2-lambda spacing rule for

reserved layers which are prohibited from being Ar/
used as input layers mr-COPY (A,2,0); /*Copy from layer A to layer2. */

for(i=1:1<= n-2:i++)
* " .
2. Width rule checking | / (nd2*)/ repetitions of expansion
an

. i mr-EXP-NE(2,2,0) ; *exterior detection detects {n-1)*/
The following procedure, Width_rule_check mr-EXDTC (2,3,1) ; /*lambda spacing rule error. */

(A,n) checks for the n-A width rule in the mask |

layer A and reports the errors for all patterns mr-OUT (3) ; /*Output layer 3 where errors are
having widths from 1 to (n-1) X’s. Since the stored*/

interior detection operation, INDTC of Multi- /
Ring checks only for 2-A width rule (where 1-A
width rule is illegal, while minimal 2-A width

is legal). Successive shrinking and interior
detection instruction is required for reporting
errors for all patterns having less than n-A
widths. The resultant errors are written on the

Space-rule-check-2 (A, B,n)
/*Check n-lambda inter-layer
spacing*/
/*rule between layer A and B. ¥/
!
mr-EXP-NE (A, A,0); /*Checking zero inter-layer spacing

layer 3 in the MultiRing memory. is*/
mr-EXP-NE(B,B,0); /*done by interior detection of the*/
Width- rule-check (A, n) mr-AND (A, B,2,0); /* ANDed result of two expanded
layers.*/

/* Check n-lambda width spacing rule for layer A*/ mr-INDTC(2,3,0);
’ for(i=1:i<=n-1;i++) /* These expansion and shrinkage

mr-INDTC (A,3,0); /*Check2-lambda width rule*/ */
mr-COPY (A,2,0); /*Copy from A to layer2.*/ ! /* fill bays in layer A and B*/
for(i=1;i <= n-2;i++) mr-EXP-NE(A, A, 0) ; /*whose widths are less than n*/
} /*(n-2) repetitions of shrinking and*/ mr-EXP-NE(B,B,0); /*in order to prevent reporting*/
mr-SHR-NE (2,2,0);/*interior detection detects(n-1)*/ | /*intra-layer spacing errors in*/
mr-INDTC(2,3,1); /*lambda width rule error.*/ for(i=1;i<=n:i+~+) /*layer A or B. */
} }
mr-OUT (3); /* Output layer3 where errors are mr-SHR-SW (A, A,0) ;
stored*/ mr-SHR-SW (B, B,0) ;
{ t
mr-OR(A,B,2,0); /*Inter-layer space error
between*/
Space-rule-check-1(2, n) ;/*A and B is equivalent to
3. Spacing rule checking intra- */
! /*layer error in layer 2 which is
Since the intra-layer spacing rule check is */
a problem which is complementary to the /*ORed result of layer A and B.
width rule check, the procedure, Space_rule_ */
check 1 (A,n) can be understood in a very
similar way, The inter-layer spacing rule check, 4. Externsion and Enclosure rule checking
Space_rule_check_2(A,n) needs extra processes The extension rule check is to report for in-
such as zero inter-layer spacing check and the sufficient amount of extension of the patterns
elimination of the bays in the two individual in one layer over the patterns in another layer,
layers whose widths are smaller than n-A’s. for example, polysilicon over diffusion, deple-
The bay elimination prevents checking the tion implant over polysilicon, etc. The pro-
intra-layer spacing errors in the two layers. cedure Extension rule check(A,B,n) consists

(1046)

118

of 1-\ expansion of all the patterns in layer
B in four directions and subtraction of layer
A from layer B, which is followed by (n + 1)
A width rule check for layer B. The extension
rule check algorithm can be used to check for
the enclosure rule error, where layer A is
regarded as the contact cut layer.

Extension rule check (A,B,n)

/* Check for the extension of patterns in layer
B over the / *

boundary of patterns in layer A by at least n

lambda’s */
{

mr EXP NE(B,B,0); /* Grow all patterns

in layer B in four */
/* directions. */
/¥ Eliminate A from B

by ANDing B with */
mr AND (B,A,2,0); /*thecomplement of A.*/

mr EXP SW(B,B,0);
mr INTV(A,A,0);

Width rule check 2,n+1);
b

5. Simulation and its results

A software simulator for MultiRing was
written in C language, whose environment is
schematically shown in Fig, 12. Each pro-
cedure within this software simulator has a one-
to-one correspondence to each hardware
module within the MultiRing. The software
library for MultiRing’s basic instructions
consists of “I/O” and “Processor” procedures
which correspond to I/O and processor blocks
respectively, while ‘“‘ring memory’ procedure

Application program

Ring Memory Processor

Graphics Termmal

Fig.12. Block diagram of software simulator for
MultiRing. The portion within the
dotted rectangle corresponds to the
MultiRing hardware,

19874 111 BrTREEHRLE H 24 % $H 6 9

within this software simulator is an integer
array performing the function of MultiRing’s
ring memory. A graphics terminal is con-
trolled by “I/O” procedures to dump the con-
tents of ring memory onto the screen. The
application program calls the functions in the
library of MultiRing’s basic instructions to
update the contents of ring memory array.
This application program can be directly
applied to the actual MultiRing hardware.
Simulation results of DRC for an example
shown in Fig. 13(a) is shown in Fig. 13(b).
This example consists of rectilinear patterns
in layer A and B. Four kinds of design rules,

1 ;3-\ width error for layer A.
2 :3-\ spacing error for layer A.

3 ;3-A spacing error between layer
A and B.

4 ;2-\ extension error of layer B
from A.

5,6;3-A width error to diagonal di-
rection of layer A.

7 ;2-N enclosure error of layer A
from B.

Fig.13. Simulation result.

(a) Two input layers A and B.

(b) Simulation results of MultiRing for
the given input layers. Location of
various DRC errors are shown with
their identification numbers ex-
plained below.

(1047)

MultiRing An Efficient Hardware Accelerator for Design Rule Checking 119

that is, width, spacing, extension, and
enclosure rules were tested successfully. In
Fig. 13(b), “1” reports 3-A width error for
layer A. “2” reports 3-\ spacing error for
layer A. “3” reports 3-A spacing error between
layer A and B. “4” reports 2-A extension
error of layer B over A, “5’ and ‘6’ reports
3-A width error to diagonal direction of layer
A. 7> reports 2-\ enclosure error of layer A
for B,

V. Conclusion

An efficient hardware architecture called
MultiRing suitable for various 2-dimensional
rectilinear geometry processing is proposed.
Although its application has been discussed
only for design rule checking in VLSI layout,
MultiRing can easily handle various image
processing operations such as filtering, transl-
ation, correlation and contour extraction.
While MultiRing is basically a hardware tradeoff
between single pipelined processor and 2-D
processor arrays, its most salient feature is the
flexibility in terms of design rule changes or
instruction set enhancements. Finally, correct

functional behaviour of MultiRing has been
shown by a software simulator (Written in C)
having a one-to-one structural correspondence
with the proposed hardware,

References

[1] Tom Blank, Mark Stefik and Willem van-
Cleemput, “A parallel Bit Map processor
architecture for DA algorithms®. Proc.
18th Design Automation Conference, pp.
837-845, 1981,

[2] Ravi Nair, Se June Hong, Sandy Liles, and
Ray Villani, ‘“Global Wiring on a Wire
Routing Machine’, Proc. 19th Design
Automation Conference, pp. 224-231,

[3] Rob A, Rutenbar, Trevor N. Mudge and
Daniel E. Atkins, “A class of cellular
architectures to support physical design
automation’®, IEEFE Transaction on CAD
of IC’s and systems, vol. CAD-3, no. 4,
pp 264-278, October 1984,

[4] Carver Mead and Lynn Conway, ‘Introdu-
ction to VLSI system”, Addison Wesley,
1980, Chapter 2.

(1048)

