W3 87-24-6-23

A One-Pass Standard Cell Placement Algorithm Using
Multi- Stage Graph Model

37 (o) & =2
(b (BB) Th L 20 g o8 wE
. -
254 A deE)
Mo EE R 8
(Hwan Gue Cho and Chong-Min Kyung)
B &

23 AL ol&d udx AHIE AAAel Yed Agel FnelFE A gk Ayl daze
F ez rAse glew, A gl orl aW = 2 ol gdtel 7t Ag Awrd o (row)ol w)
Z&har kel viadol Wadtw 2z sidele odol YolEoh B wiAleMy g Ao A4 E o
2o ol A Foial v &40t 545—‘% #Hazh HA R st A el 2 BX o g ZholM Al i)
Adal Aol o st o] wbl e Fefe]l 43 (pairwise interchange) WAl ot Uduislel Fubak ol
(generalized force-directed relaxation)%" Bl wlAlol uwial] of J00wiA e wE £x g Zal
sei, viad el Aol FHEAN] ALol e £ duFol sl Z4HA FHE 2 5 durh

Abstract

We present a fast, constructive algorithm for the automatic placement of standard cells,
which consists of two steps. The first step is responsible for cell-row assignment of each cell,
and converts the circuit connectivity into a multi-stage graph under the constraint that sum of
the cell-widths in each stage of the multi-stage graph does not exceed maximum cell-row
width. Generation of feed-through cells in the final layout was shown to be drastically reduced
by this step. In the second step, the position of each cell within the row is determined one by
one from left to right so that the cost function such as the local channel density is minimized.
Our experimental result shows that this algorithm yields near optimal results in terms of the
number of feed-through cells and the horizontal tracks, while running about 100 times faster
than other iterative procedures such as pairwise interchange and generalized force directed
relaxation method.

145

I. Introduction

As various CAD (Computer-Aided Design)
tools are developed in recent VLSI design

*FEA, BRESEEFNE BE Y LB
(Dept. of Elec. Eng., KAIST)

*EEE, REBEEE EREH
(Dept. of Computer Science, KAIST)

¥EZAT 1987 5H 9H

(1074)

process, automatic layout genera-ion and verif-
ication steps especially require efficient design
aids since layout tasks are extremely labor-
intensive, error-prone and time consuming
without CAD tools. While there are several
major design strategies in VLSI implement-
ation, we concentrate on the standard cell
approach where the information on each cell
such as its electrical behavior, d tailed layout
and external pin position and (haracteristics

146

are prestored in the cell library. Standard
cells are typically designed to fit together in
rows, where common signals such as power,
ground and clocks run through the cells
horizontally at fixed position. The purpose of
the cell placement in the standard cell method
is to ease the ensuing routing task in as small
as possible by minimizing such objective
functions as total wiring length, the number
of feed-through cells and total channel density.

Placement algorithms for standard cells can
be basically categorized into two types, ie.,
constructive placement and iterative improve-
ment. In practical implementation, the con-
structive placement is used for an initial place-
ment and the result is refined using various
iterative improvement methods. For the
initial placement there are several strategies
such as graph cluster[1], graph partitioning
based on min-cut scheme[2,3], estimation of
relative cell position[4] and linear ordering/
folding[5,6,7]. For iterative improvement,
pairwise cell exchnage[2,6] and force directed
relaxation[4,7] methods and simulated annea-
ling are generally used[8].

This paper has focused on obtaining a one-
pass (noniterative) solution for a standard
cell placement, which does not have the time-
consuming trial-and-error nature of the iterative
improvement approach., In the first step of
our procedure, each cell is assigned its row in
the first step using a multi-stage graph model
which is rather a natural abstraction of the
standard cell layout and explained in Section
II. The specific position of each cell within the
row is determined in the second step based on
the evaluation of an objective function reflec-
ting the local channel density at the cell
rectangle being crossed by a hairline cursor
which sweeps from the left end of the row to
the right. In both steps, the asymptotic time
complexity is omz, where 7 is the total number
of cells; however, the actual CPU time con-
sumed is nearly minimal since the propotion-
ality constant, « is very small due to the fact
that both procedures are of one-pass, non-
iterative nature, and the respective cell position
is not disturbed any more once determined.

II. Multi-Stage Graph Model for Row
Assignment

1987 110 B TEBRGEE F 245 F 6 5

In the channel routing step following the cell
placement, the cost of interconnection can be
reduced 1) if the cells to be interconnected are
located in the same row or in the adjacent rows,
and/or 2) if the cell positions within each row
is adjusted such that the channel density is
minimal. Condition 1) can be satisfied by
incorporating a multi-stage graph model,
which is as follows, while the line sweep
method explained in Section III is responsible
for meeting condition 2).

We draw a graph by mapping each cell into
vertex and drawing edges between vertices if
the corresponding cells are sharing a signal
net, and modify the resultant graph into a
multi-stage graph by creating dummy nodes
(feed-through cells), if necessary. Multi-stage
graph is denoted by G(V,, V;,..., Vn). We call
V, as stage 1, V, as stage 2, and Vn as stage n.
Each stage is a subset of V, which is the total
vertex set of the multi-stage graph, G. An
important feature of the multi-stage graph is
that every edge in G connects either the
vertices belonging to the same stage or those in
the neighboring stages such that no edges can
cross over any stage without creating dummy
nodes in the intermediate stages in between.
For a more formal definition, if we let (p, q) be
an edge of multi-stage graph G, where p € Vi
and q € Vj, then the difference between the
two stage indices is at most 1, i.e.,

|i-1] <u

As an example, Fig. 1 (a) shows a graph
where each vertex represents cell, and edges
denote the inter-cell connection, while (b)
shows its multi-stage graph representation.
We note that an extra node denoted as F in
stage 3 represents a feed-through cell in the
cell placement obtained from this multi-stage
graph.

Actually, in constructing a multi-stage graph
having a constant number of stages from a
given circuit, we may insert a dummy vertex
(feed-through cell) into the stage V. to maintain
the property of the multi-stage graph, when
edges crossing over the stage V. exist. The
process of transforming a given graph into a
multi-stage graph begins by forming the
base row which is the stage 1. Let the average

(1075)

A One-Pass Standard Cell Placement Algorithm Using Multi- Stage Graph Model 147

[N

Vi C‘! 2(1__):73) stage 1

(b)

Fig. 1. A graph and its multi-stage graph.

row width be Wav which can be approximately
computed from the sum of total cell width and
the number of cell rows. We choose a seed
cell which is least connected to other cells.
Subsequently, cells are incorporated into the
base row one by one until the total width of
base row exceeds Wav To describe the row
assignment process, we divide the whole cells
into two groups: one group called staged
group consist of cells which were assigned their
respective rows and the other group called
unstaged group consist of cells which were
not yet assigned the row. Having selected the
seed cell, we select a cell among the unstaged
group which maximizes the following objective
function F(¢) and add it to base row:

F, ()= Cy *N1 -Cy *Nz

, where ¢ is a candidate unpartitioned cell.
N; and N, denote the number of cells in the
staged group adjacent to ¢, and the number of
cells in the unstaged group adjacent to c,
respectively, while the coefficients Cy and C;
are empirical constants.

After the cell assignment in the base row is
completed, the assignment of remaining cells
in the subsequent rows is performed. Let us
assume that all the rows from the 1st stage
(base row) to the i-th stage has been occupied
with cells and we will describe how to construct
the (i + 1)-th stage. Let Adj_row(i) be the set
of unstaged cells which is connected to one
or more cells in the i-th stage(row). Adj_row(i)
then becomes a pool of cells which are
candidates to be positioned in the (i + 1)-th
row. If the sum of the widths of cells in
Adj row(i) is greater than Wav , then some cells
in Adj row (i) are to be deleted. When we
delete a cell from Adj_row(i), the cell whose
removal causes the generation of minimal
number of feed-through cells are removed
first. We define a discarding function F,(c)
to select a cell to be removed from Adjrow(i):

Fa(0) = [No[— Ny |

, where Na is the set of nets linking cell ¢
to some cell in the (i)-th stage and Nb is the
set of nets among Na’ to which another cell
in Adj.row(i) belongs. It is easy to see that
F,(c) is the number of feed-through cells to
be generated to make a multi-stage graph, if
the cell ¢ is removed from Adj_row(i). This
deletion process continues until all the
reamining cells in Adj_row(i) can fit in the
(i + 1)-th row. In Fig. 2, we show the staged
cells in the i-th stage and the cells in Adj.row(i).
Based on this removal strategy, we choose to
remove the cell a and b since the removal of
cell a or b does not incur the generation of
feed-through cells, while removing cell ¢,
creates a feed-through cell in the (i+1)-th stage.

. \‘
e
o S~
40
feed mrmqnéﬁ‘ /
e «»—{)ﬁbﬁl <
T 1 Ve

i-th row Adj -row {1} i-th row Ad) - row (1}

Fig. 2. Cell deletions which cause the feed-
through or not from Adj-row(i).

(1076)

148

On the other hand, if the sum of the widths
of the cells in Adj_row(i) is less than Wavg’
additional cells are to be recruited into the
Adj_row(i) to fill in the empty slots in Adj_
row(i), We choose a cell from the unstaged
cells based on the selecting function F;({(c)
and insert the selected cell into Adj_row(i).
This procedure is shown as an abstract code in
Fig. 3. Time complexity of the row assignment
step is O(nz) where n denotes the total number
of cells.

Multi-stage Graph Algorithm for Row Assignment

Input a graph denoting the electrical circuit
Output a multi-stage graph (row assignment result)
(1) Compute the number of rows and average row width, Wy
(2) Make the base row (stage 1) and let i : =1
{3) Get Adjrow(i).
{4} If the total width of Adj-row(i) > W then
while (the total width of Adj-row (i) > Wavg) do
begin
delete a cell from Adj-row (i) which minimizes
a discarding function F, (¢);
if the deletion causes feed-through cell generation then
insert feed-through cells into Adj-row (i);
end;
eke
while (the total width of Adj-row (i) < Way) do
choose a cell out of unpartitioned cells which maximizes
the selecting function F, (¢) and
insert it into Adjrow (i)
(5) Assign the cells in Adj-row (i) to the (i+1)-th stage.
{6) If the last row was constructed, stop here.
Otherwise let i :=i+1 and go to (3. /

Fig. 3. Row assignment algorithm using multi-
stage graph.

III. Line Sweep Method for Intra-Row
Cell Placement

After each cell is assigned its row to be
placed in, the second step determines the
exact physical location of each cell within the
row. Initially, we calculate the left end and
right end position of each row within the
chip assuming that all rows are centered symm-
etrically at a position to minimize the total
chip area as shown in Fig. 4, where Bi and Ei
denote left end and right end position of the
i-th row, respectively.

To describe the line sweep method for the
cell positioning within the row, we define the

1987 118 BEFIRERCGE £ 4% % 6 %
ln 1 n
.:7 n-th row
8n : ﬁ‘i : En
p3‘ . o'
l T 3rd row J
{ ’ : ’ t
83 2 T 42 €3
r | 2nd row '
I
e .y 1 o — €
¥ {
1 ! base row
— ; -
By : ' : [N
——— Wag = ———

Fig. 4. Global chip configuration.

i-th point P, as the x-coordinate of the interface
line between the placed cells and the unplaced
cells in the i-th row. Fig. 5 shows a snapshot
taken during the cell positioning process using
line sweep method, where placed cells are those
which already found its final position and
denoted as shaded boxes, while unplaced cells
are those still remaining in the waiting pool of
the relevant row and denoted as white boxes,
The current sweep line shown as a dotted
vertical line at x = Xg is hopping rightward
from its current x-position (P, in Fig. 5) to the
next position (P3), which becomes the active
front being cetermined as min; {Pi} .

Fig. 5 shows an intermediate state of this
process, where P; = 10, P, =7, P3 =9, P; =
14. At the beginning of the seonc step, P, is
set to Bi Suppose we have placed several cells
in rows such as in Fig. 5; we then find the m-
th row which satisfies PL= min; {Pi}.The next
cell to be placed is then chosen from the group
of unplaced cells in the m-th row such that a
selecting function is maximized. This is shown

/rié]

3rd row

[empty space
e 1Pyeo

07 /

placed cells

fp2.7

Bl

e
.1P1 10

Sweep line (X =Xg)

Fig. 5. Line sweeping for intra-row cell
placement.

(1077)

A One-Pass Standard Cell Placement Algorithm Using Multi- Stage Graph Model 149

Fig. 6. An intermediate state of step2 : shaded
cell is selected for row 3.

in Fig. 6 where the placed cells are shown in
the cell rows, while the unplaced cells are still
in the multi-stage graph. A cell (shaded)
selected from the stage 3 of the multi-stage
graph, A cell (shaded) selected from the stage
3 of the multi-stage graph is shown to be
joining the cell row 3, when the sweep line is
at X = xg. We prepare the selecting function
F3(c) which computes the number of nets
which are connected to cell ¢ and cross over
P~ The function Fj(c¢) is defined more
formally as follows:

Fs()= N NN,

, where N, is the set of nets attached to the
cell ¢, and N_ is the set of nets which should
interesect the current vertical sweep line x =
P In addition, several tiebreaking schemes
are provided for cases when a tie occurs in the
values for F3 (¢) among many cells unplaced.
This process continues for all rows simult-
aneously until all the cells are placed within the
corresponding row. The intra-row placement
procedure is briefly shown as an abstract code
in Fig, 7.

IV. Conclusion

Since time complexities of both the multi-
stage graph formation and the intra-row cell
placement are O(n?), the overall time com-
plexity of the standard cell placement pro-
cedure proposed is O(n?), where n is the
number of standard cells. However, since
both the multi-stage graph formation and line
sweep process are inherently of one-sweep

(1078)

Line Sweep Akgorithm for Intra-Row Cell Plcement

Input : the row partition obtained from the first step.
Output . the final standard cell placement layout.

(1) Compute B, and E, for all rows.
{2) Let P, :=B; for all rows.
(3] Find m-th row such as Pp =min} P{.
(4) For the unplaced cells in m-th row
choose a cell ¢ which maximizes the selecting function F;{c).
{5) Advance the position of P, the position such that
Py:=Pg + the width of the cell ¢
{6) If there still remain upnlaced cell remained, then go to step(3k
Otherwise stop here, //

Fig. 7. Intra-Row cell placement algorithm by
line sweeping.

nature requiring no iteration the pro-
portionality factor a(in an,) is very small
and the actual CPU time is significantly less
compared to other methods based on iterative
improvement such as GFDR (Generalized
Force Directed Relaxation) or PI (Pairwise
Interchange).

We implemented this procedure using C
language on VAX 11/750 and applied it to
three example circuits prepared, shown as
ALU, COM and CAL in Table 1,

It compares the CPU time, number of
horizontal tracks and the number of feed-
through cells generated among our procedure
explained in this work, the procedure based
on LOF (linear ordering and folding) for
initial placement and nearly exhaustive PI
(Pairwise Interchange) [6] for iterative
improvement (LOF + PI) and LOF followed by
GFDR (General Force Directed Relaxation)[7]
for iterative placement improvement (LOF+
GFDR),

It is worth pointing out that the CPU time
and the number of feed-through cells is reduced
drastically, while the number of horizontal
tracks generated is still comparable, Fig, 8
shows the result of channel routing using
greedy algorithm for the placement result of
CAL example obtained from the proposed
placement procedure. Based on this experi-
mental result, we like to propose that the row
partitioning procedure using the multi-stage
graph is more natural than the other circuit
partitioning procedure such as Min-Cut and
linear ordering/folding in standard cell place-
ment problems. Since the global consideration

150 1987% 117 EFIBEALE £ 24 % ¥ 6 4%

Table 1. Experimental results

. CPU(time (Sec.) No. of horizontal tracks No. of feed-thru cells
Circuit | No.of
name | cells | LOF+ | LOF+ [this | LOF+ | this LOF+| LOF+ | LOF+ [this
PI GFDR work Pl GFDR work Pl GFDR work
ALU 67 1445 407 4 34 33 32 7 5 0
COM 144 4424 1451 12 46 45 49 5 5 0
CAL 270 12350 4921 40 82 72 70 50 19 0

Automation Conf., pp. 392-398, 1984,

[2] M. Murakata et. al.,, “A Standard Cell
Placement Algorithm with Predictive Row
Width Equalization”, Proc. ICCAD., pp.
374-377, 1986.

[3] A. E. Dunlop and B. W, Kernighan, “A
Procedure for Placement of Standard Cell
VLSI Circuits®, [EEE Trans. CAD, vol.
CAD-4, no. 1 pp. 92-98, Jan. 1985.

[4] K. M. Just, J. M. Kleinhans and F. M.

e e Johannes ‘On the Relative Placement and

} “1_——“‘—‘__' F%::L The Transportation Problem For Standard-

Ul“‘ MH 1“ E\ \ ‘ ; 1 I L‘JJ Cell Layout”, Proc. 23rd Design Automa-
] tion Conf., pp. 308-312, 1986.

[5] S. H. Kang, “Linear Ordering and Applic-
ation to Placement’, Proc. 20th Design
Automation Conf., pp. 457-463, 1983,

(6] G. S. Kang, “A Study on the Automatic

Fig. 8. Automatically generated layout for
circuit, CAL, with 270 cells.

for the cell placement was already given in the Placement System for Standard Cell”, M.S.
multi-stage graph formulation step, the ensuing thesis, KAIST, Feb. 1986.

cell positioning procedure was able to produce [71 N. W. Eum, “A Study on the Automatic

a cost-effective and near-optimal solution, Layout System for Standard Cell”, =~ M.S.
although the cell positioning is considered only thesis, KAIST, Feb, 1987.

within its row. [8] M. R. Hartoog, ‘‘Analysis of Placement

Procedures For VLSI Standard Cell

References Layout™, Proc. 23rd Design Automation:

Conf., pp. 314-319, 1986.
[1] B. D. Richard, ‘A Standard Cell Initial
Placement Strategy’, Proc. 21th Design

(1079)

