Structure Study of Polycrystalline $\mathrm{Na}_{3} \mathrm{YSi}_{3} \mathbf{O}_{\text {, }}$ and Its Substitutes Related to $\mathrm{Na}_{4} \mathrm{CaSi}_{3} \mathrm{O}_{9}, \mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{O}_{6}$ Structure

Chy Hyung Kim*
Department of Elcctronic Engincering, Chongiu University. Chongin 310

Ephraim Banks
Department of Chemistry, Polytcchnic Institute of New York, Brooklyn, Now York 11201. Reccived August 14, 1986

Abstract

The study of the $\mathrm{Na}_{3} \mathrm{YSi}_{3} \mathrm{O}_{9}$ structure, by x-ray diffraction and infrared spectrun, showed that $\mathrm{Na}_{4} \mathrm{YSi}_{3} \mathrm{O}_{4}$ is similar to $\mathrm{Na}_{4} \mathrm{CaSi}_{3} \mathrm{O}_{4}$ except for its being pseudo-cubic instead of cubic. The peaks in the x-ray diffraction pattern of $\mathrm{Na}_{3} \mathrm{YSi}_{3} \mathrm{O}_{4}$, couid therefore be indexed on the basis of the $\mathrm{Na}_{3} \mathrm{CaSi}_{3} \mathrm{O}_{9}$ cell. Also, modified $\mathrm{Na}_{3} \mathrm{MSi}_{3} \mathrm{O},(\mathrm{M}=\mathrm{Lu}, \mathrm{Yb}, \mathrm{Tm}, \mathbf{E r}, \mathrm{Y}, \mathrm{Ho}, \mathrm{Dy}, \mathrm{Gd}, \mathbf{E u}$, and Sm$)$ type compounds were synthesized by introducing excess sodium, decreasing M(III) concentration, and substituting small amount of phosphorus for silicon. The unit cell parameters of the composition $\mathrm{Na}_{3,2} \mathrm{M}_{0}, \mathrm{Si}_{2}, \mathrm{P}_{\mathrm{n}}, \mathrm{O}_{\mathrm{n}}$, were estimated from x-ray powder diffraction patterns using the Cohen method.

Introduction

In 1970 Maki and Sugimura' showed that $\mathrm{Na}_{4} \mathrm{CaSi}_{3} \mathrm{O}_{9}$ is very similar crystallographically to $\mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{O}_{6}$. Both belong to space group Pa 3 and have similar unit cell dimensions. The unit cell of $\mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{O}_{6}$ consists of $72 \mathrm{Ca}, 48 \mathrm{Al}$ and 144 O . A unit cell of $\mathrm{Na}_{4} \mathrm{CaSi}_{3} \mathrm{O}_{9}$, consists of $64 \mathrm{Na}, 16 \mathrm{Ca}, 48 \mathrm{Si}$, and 144 O . Thus there exist eight additional cations per unit cell in $\mathrm{Na}_{4} \mathrm{CaSi}_{3} \mathrm{O}_{4}$. Mondal and Jeffery ${ }^{2}$ refined the $\mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{O}_{6}$ structure with $\mathrm{R}=5.1 \%$ and reported that "the structure consists of eight $\mathrm{Al}_{6} \mathrm{O}_{18}$ rings in a unit cell, surrounding holes of radius $1.47 \AA$ at $(1 / 81 / 81 / 8)$ and its symmetry-related positions, with calcium ions holding the rings together". According to their

Figure 1. One eighth of the unit cell $\mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{O}_{6}$ viewed along [010]. The origin is at rear, right-hand bottom corner.
study, "there are 80 possible holes between the eight $\mathrm{Al}_{5} \mathrm{O}_{1 s}$ rings in the unit cell and 72 of them are filled up with calcium. leaving eight vacant. The unit cell of $\mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{O}_{6}$ consists of 64 pseudo-cells ($a^{\prime}=a / 4$). The calcium atoms occupy 56 bodycentering positions of the pseudo-cells leaving eight of them vacant, namely (1/8 $1 / 81 / 8$) and its symmetry-related positions. The 48 aluminum atoms and the remaining 16 calcium atoms occupy the corners of the pseudo-cells" (See Figure 1 and 2). They emphasized its isomorphic relationship with $\mathrm{Na}_{4} \mathrm{CaSi}_{3} \mathrm{O}_{9}$ which has $\mathrm{Si}_{6} \mathrm{O}_{18}$ rings. In addition, the replacement of CaO by $\mathrm{Na}_{2} \mathrm{O}$ in $\mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{O}_{8}$ has been proved by Regourd et al. ${ }^{3}$, because the sizes of calcium ion and sodium ion are comparable and there are eight vacant holes available to replace one calcium ion by two sodium ions.

In 1980. Shannon et al. ${ }^{4}$ reported the unit cell of $\mathrm{Na}_{3} \mathrm{YSi}_{3} \mathrm{O}_{4}$ is similar to those of $\mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{O}_{6}$ and $\mathrm{Na}_{4} \mathrm{CaSi}_{3} \mathrm{O}_{9}$. However, no evidence was given for that assumption.

Figure 2. An $\mathrm{Al}_{6} \mathrm{O}_{1 \times}$ puckered ring of $\mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{O}_{6}$ at $\frac{1}{8} \frac{1}{8} \frac{1}{8}$ viewed along $[\overline{111}]$.

The results of this work could give stronger confirmation about the $\mathrm{Na}_{3} \mathrm{YSi}_{3} \mathrm{O}_{9}$ structure, which is very similar to $\mathrm{Na}_{4} \mathrm{CaSi}_{3} \mathrm{O}_{\text {, }}$ and $\mathrm{CaAl}_{2} \mathrm{O}_{6}$ except that it is orthorhombic close to being pseudo-cubic instead of cubic. Also, samples of composition $\mathrm{Na}_{3.2} \mathrm{M}_{0.5} \mathrm{Si}_{2.9} \mathrm{P}_{0.6} \mathrm{O}_{8.7}(\mathrm{M}=\mathrm{Lu}, \mathrm{Yb}, \mathrm{Tm}, \mathrm{Er}, \mathrm{Y}, \mathrm{Ho}$, Dy, Gd, Eu, and Sm) based on the $\mathrm{Na}_{3} \mathrm{YSi}_{3} \mathrm{O}$, composition were synthesized. The unit cell parameters were estimated from x-ray powder diffraction patterns using the Cohen methods.

Experimental

For the synthesis of $\mathrm{Na}_{3} \mathrm{YSi}_{3} \mathrm{O}_{4}$ starting materials $\mathrm{Na}_{2} \mathrm{CO}_{3}$, $\mathrm{Y}_{2} \mathrm{O}_{3}$, and SiO_{2} were mixed in proper stoichiometric proportion and fired at $1180^{\circ} \mathrm{C}$ for 18 hours in a furnace. The fired sample was ground and reheated at the same temperature for $5-10$ hours. X-ray patterns were obtained on a Philips powder diffractometer using $\mathrm{Cu} \mathrm{K} a$ radiation. The indexing of each peak was attempted on the basis of lattice parameter $a=15.215$ $\AA, b=15.126 \AA$, and $c=15.036 \AA$. Also, the infrared spectrum of this specimen was recorded and compared with that of $\mathrm{Na}_{4} \mathrm{CaSi}_{3} \mathrm{O}_{9}$. The infrared instrument used was the PerkinElmer Model No. 337.

For the preparation of $\mathrm{Na}_{3,2} \mathrm{M}_{0,3} \mathrm{Si}_{2.9} \mathrm{P}_{0,1} \mathrm{O}_{4,7}$, the starting materials $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{SiO}_{2}, \mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$, and $\mathrm{M}_{2} \mathrm{O}_{3}$ were weighed and ground in a proper stoichiometric proportion. They were fired for overnight at $890^{\circ} \mathrm{C}-1020^{\circ} \mathrm{C}\left(1015^{\circ} \mathrm{C}\right.$ for $\mathrm{M}=\mathrm{Y}$; $980^{\circ} \mathrm{C}$ for $\mathrm{M}=\mathrm{Dy}, \mathrm{Yb} ; 945^{\circ} \mathrm{C}$ for $\mathrm{M}=\mathrm{Ho}, \mathrm{Gd}, \mathrm{Er} ; 930^{\circ} \mathrm{C}$ for $\mathrm{M}=\mathrm{Eu}, \mathrm{Lu}, \mathrm{Tm}$; and $895^{\circ} \mathrm{C}$ for $\mathrm{M}=\mathrm{Sm}$) in covered platinum crucibles. Samples were quenched, reground, reheated at the same temperature for 6-12 hours and quenched in air again. X -ray patterns of products obtained by quenching and by cooling at the natural cooling rate of the furnace were essentially the same.

To estimate the lattice parameters of each sample pure Si powder as an internal standard, was mixed with all samples and peaks of the samples between the Si peaks were corrected using the interpolation method. Sample peaks used were in the 2θ range of $60-70^{\circ}$ since it is practical to deduce accurate values of the lattice constants in the range $\theta=30$ to 90°; peaks with indices (844), (484), (448), (880), (808), and (088) were

Figure 3. Powder x-ray diffraction pattern of $\mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{O}_{6}$.
chosen because they were clearer than the others. In this work the Cohen's least-square method ${ }^{5}$ was employed with angle error term ${ }^{6}$
$\Delta \sin ^{2} \theta=\mathrm{D} \sin ^{2} 2 \theta(1 / \sin \theta+1 / \theta)$.
Peak positions were read within about $\pm 0.04^{\circ}(2 \theta)$ after 3-5 trials. The normal equations established were solved by using the matrix function of a programmable Texas Instrument TI-58C calculator.

Results and Discussion

Figures 3 and 4 show the x-ray powder diffraction patterns of $\mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{O}_{6}$ and $\mathrm{Na}_{4} \mathrm{CaSi}_{3} \mathrm{O}_{9}$. The diffraction characteristics of these two compounds have been regarded to be essentially similar to each other'. Figure 5 shows the x-ray powder diffraction pattern of $\mathrm{Na}_{3} \mathrm{YSi}_{3} \mathrm{O}_{9}$. The peaks in the $\mathrm{Na}_{3} \mathrm{YSi}_{3} \mathrm{O}_{4}$ pattern could be indexed on the basis of the $\mathrm{Na}_{4} \mathrm{CaSi}_{3} \mathrm{O}_{9}$ cell. However, the shape of the peaks in $\mathrm{Na}_{3} \mathrm{YSi}_{3} \mathrm{O}_{9}$ pattern is less sharp than those of $\mathrm{Na}_{4} \mathrm{CaSi}_{3} \mathrm{O}_{\text {, due to the pseudo-cubic nature }}$ of the cell. In other words, the a, b, and c values are not exactly equal as in a cubic structure, but they are very similar. The X -ray peaks are thus broader due to all possible permutations of (hk) reflections in the equation $\mathrm{d}^{* 2}=\mathrm{h}^{2} \mathrm{a}^{* 2}+\mathrm{k}^{2} \mathrm{~b}^{* 2}+\mathrm{l}^{2} \mathrm{c}^{* 2}$

Figure 4. Powder x-ray diffraction pattern of $\mathrm{Na}_{4} \mathrm{CaSi}, \mathrm{O}_{4}$.

Figure 5. Powder x-ray diffraction pattern of $\mathrm{Na}_{3} \mathrm{YSi}_{3} \mathrm{O}_{9}$.
where $d^{*}=l / d, a^{*}=V a, b^{*}=l / b$, and $c^{*}=V / c$. For example, cubic peaks with indices (230), (203), (320), (302), (023), and (032) have the same ' d ' value and are located at the same 2θ value. However, in the orthorhombic structure, their d values are different and if the lattice constants are very similar, the peaks will be located very closely to each other, thereby giving rise to one broad peak. The indices expressed with brackets $\langle>$ indicate all or part of the possible (hkl) permutations. Among the indices shown in Figure 5, only (444) has no other permatation except for itself. It thus gives a sharp peak compared to the other peaks.

Figure 6 shows the infrared spectra of $\mathrm{Na}_{3} \mathrm{YSi}_{3} \mathrm{O}_{9}$, $\mathrm{Na}_{4} \mathrm{CaSi}_{3} \mathrm{O}_{9}$, and $\mathrm{Na}_{3.2} \mathrm{Y}_{0 .,}, \mathrm{Si}_{2,9} \mathrm{P}_{0,4} \mathrm{O}_{8,7}$. The spectra are essentially similar to each other, indicating similar structural relation

Figure 6. Infrared spectrum of $\mathrm{Na}_{4} \mathrm{CaSi}_{3} \mathrm{O}_{9}, \mathrm{Na}_{3.2} \mathrm{Y}_{0}{ }_{7} \mathrm{Si}_{2,0} \mathrm{P}_{0}, \mathrm{O}_{0,}$ and $\mathrm{Na}_{3} \mathrm{YSi}_{3} \mathrm{O}_{4}$.
between the compounds. From the Hooke's law expression, the frequency is given by:

$$
\nu=\frac{1}{2 \pi c}\left[\frac{k}{u}\right]^{1 / 2}
$$

where c is the velocity of light $\left(=3 \times 10^{10} \mathrm{~cm} / \mathrm{sec}\right), \mathrm{k}$ the force constant in dyne/cm, and u is the reduced mass. This equation can be used to calculate the approximate position of a band in the infrared spectrum by assuming that k for the Si 0 bond is about 5×10^{5} dyne $/ \mathrm{cm}$. This force constant was calculated numerically for the $\mathrm{Si}_{6} \mathrm{O}_{18}$ ring type by Saksena et al. ${ }^{7}$. Then the stretching frequency of $\mathrm{Si}-\mathrm{O}$ bond should be $917 \mathrm{~cm}^{-1}$ approximately. However, mixing of the vibrations

Table 1. Estimation of $\mathrm{Na}_{3} \mathbf{Y b}_{0}, \mathrm{Si}_{1}{ }_{9} \mathbf{P}_{0}, \mathrm{O}_{\mathrm{s}}$, Lattice Constants

Lattice constants

$$
\begin{aligned}
& a=15.165 \pm 0.001 \AA \\
& b=15.103 \pm 0.001 \AA \\
& c=15.000 \pm 0.001 \AA
\end{aligned}
$$

Figure 7. Infrared spectrum of $\mathrm{Cu}_{6} \mathrm{Si}_{6} \mathrm{O}_{18} \cdot 6 \mathbf{H}_{3} \mathrm{O}$.
Table 2. $\mathrm{Na}_{3.2} \mathrm{M}_{0.9}^{\mu \prime} \mathrm{Si}_{2.9} \mathbf{P}_{0.1} \mathrm{O}_{3}$,

Formula	Lattice Constants (\mathbf{A})
$\mathrm{Na}_{3.1} \mathrm{Lu}_{0.7} \mathrm{Si}_{3}, \mathrm{P}_{0}, \mathrm{O}_{6 .}$,	$a=15.160 \pm 0.006$
	$b=15.076 \pm 0.004$
	$c=14.989 \pm 0.005$
$\mathrm{Na}_{3.2} \mathrm{Yb}_{0}, \mathrm{Si}_{2.9} \mathrm{P}_{0.4} \mathrm{O}_{8.5}$	$a=15.165 \pm 0.001$
	$b=15.103 \pm 0.001$
	$c=15.000 \pm 0.001$
$\mathrm{Na}_{3} \mathrm{Tm}_{0.7} \mathrm{Si}_{2.9} \mathrm{P}_{0.1} \mathrm{O}_{5,7}$	$\mathrm{a}=15.192 \pm 0.006$
	$b=15.095 \pm 0.020$
	$c=15.011 \pm 0.015$
$\mathrm{Na}_{3,2} \mathrm{Er}_{6.7} \mathrm{Si}_{2}, \mathrm{P}_{0.1} \mathrm{O}_{0.7}$	$a=15.193 \pm 0.008$
	$b=15.108 \pm 0.019$
	$\mathrm{c}=15.011 \pm 0.016$
$\mathrm{Na}_{3}{ }_{2} \mathrm{Y}_{0}, \mathrm{Si}_{2.9} \mathrm{P}_{0.1} \mathrm{O}_{8.7}$	$\mathrm{a}=15.211 \pm 0.002$
	$\mathrm{b}=15.118 \pm 0.001$
	$c=15.017 \pm 0.001$
$\mathrm{Na}_{3,2} \mathrm{Ho}_{0.7} \mathrm{Si}_{2,9} \mathrm{P}_{0}, \mathrm{O}_{8}$,	$a=15.197 \pm 0.003$
	$b=15.124 \pm 0.001$
	$c=15.034 \pm 0.001$
$\mathrm{Na}_{3.2} \mathrm{Dy}_{0.7} \mathrm{Si}_{2.9} \mathrm{P}_{6}, \mathrm{O}_{3}$,	$a=15.218 \pm 0.002$
	$b=15.146 \pm 0.001$
	$c=15.040 \pm 0.002$
$\mathrm{Na}_{3.2} \mathrm{Gd}_{0.9} \mathrm{Si}_{2.9} \mathrm{P}_{\mathrm{b}, \mathrm{l}} \mathrm{O}_{8.7}$	$a=15.241 \pm 0.001$
	$\mathrm{b}=15.175 \pm 0.002$
	$c=15.064 \pm 0.002$
$\mathrm{Na}_{3,7} \mathrm{Eu}_{0.7} \mathrm{Si}_{2.9} \mathrm{P}_{0.1} \mathrm{O}_{8.7}$	$\mathrm{a}=15.300 \pm 0.004$
	$b=15.201 \pm 0.005$
	$\mathrm{c}=15.074 \pm 0.004$

occurs in spectra of $\mathrm{Si}_{6} \mathrm{O}_{18}$ anions and it is probable that the assignment of a considerably higher frequency ${ }^{6}$ than that resulting from calculation is associated with the difficulty in clearly distinguishing the frequencies of the complex anion. It is supposed ${ }^{9}$ that the appearance of a high frequency band is due largely to special features in the dynamics of the anion. The infrared spectrum of dioptase ($\mathrm{Cu}_{6} \mathrm{Si}_{6} \mathrm{O}_{18} \cdot 6 \mathrm{H}_{2} \mathrm{O}$), in which the $\mathrm{Si}_{6} \mathrm{O}_{18}$ ring is a nonplanar structure, has been studied ${ }^{9,10}$. Figure 7 shows the frequencies of the asymmetric $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ stretching at about $1000 \mathrm{~cm}^{-1}$ and those of symmetric $\mathrm{Si}-\mathrm{O}-$ Si stretching at about $770 \mathrm{~cm}^{-1}$. In a planar ring the $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ angle increases. This makes asymmetric stretching energetically favorable and the asymmetric $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ vibration increases. It was therefore expected that a planar ring might have higher asymmetric $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ vibrational frequency and lower symmetric $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ vibrational frequency ${ }^{\circ}$. As can be
seen in Figure 2, the six bridging oxygen atoms are almost coplanar thus the absorption bands in the $900-1080 \mathrm{~cm}^{-1}$ and $750 \mathrm{~cm}^{-1}$ region for $\mathrm{Na}_{3} \mathrm{YSi}_{3} \mathrm{O}_{\text {, }}$ may be expected to be due to the $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ vibration in $\mathrm{Si}_{6} \mathrm{O}_{18}$ anion structure.

Even though the synthesis of the $\mathrm{Na}_{3} \mathrm{YSi}_{3} \mathrm{O}$, single crystal by solid solution method was not successful, the similarities in powder x-ray diffraction pattern and infrared spectra as mentioned above give the idea that $\mathrm{Na}_{3} \mathrm{YSi}_{3} \mathrm{O}$, and $\mathrm{Na}_{4} \mathrm{CaSi}_{3} \mathrm{O}_{9}$ are nearly isostructural. The unit cell contents of $\mathrm{Na}_{3} \mathrm{YSi}_{3} \mathrm{O}_{\text {, }}$ are: $48 \mathrm{Na} .16 \mathrm{Y}, 48 \mathrm{Si}$, and 1440.
The 48 Na and 16 Y would occupy 64 sites holding eight $\mathrm{Si}_{6} \mathrm{O}_{18}$ rings coordinated by six SiO_{4} tetrahedra, leaving 16 vacant holes.

The x-ray patterns of $\mathrm{Na}_{3,2} \mathrm{M}_{0}, \mathrm{Si}_{2}, \mathrm{PP}_{\mathrm{o} . \mathrm{O}} \mathrm{O}_{\mathrm{s}, 7}(\mathrm{M}=\mathrm{Lu}, \mathrm{Yb}$, $\mathrm{Tm}, \mathrm{Er}, \mathrm{Y}, \mathrm{Ho}, \mathrm{Dy}, \mathrm{Gd}, \mathrm{Eu}$, and Sm) showed that they are isostructural with $\mathrm{Na}_{3} \mathrm{YSi}_{3} \mathrm{O}_{9}$. Only some shifts in the position of the peaks depending on the size of $\mathrm{M}(\mathrm{III})$ ion were observed. For estimation of the orthorhombic $\mathrm{Na}_{3,2} \mathrm{M}_{0 .,}, \mathrm{Si}_{2,} \mathrm{P}_{0.1} \mathrm{O}_{3 .}$, lattice constants the following equation was employed:

$$
\alpha A+\beta B+\gamma C+\delta D=\sin ^{2} \theta
$$

were $\alpha=h^{2}, \beta=k^{2}, \gamma=l^{2}, \delta=\sin ^{2} 2 \theta(1 / \sin \theta+1 / \theta), A=\lambda^{2} / 4 a^{2}$, $\mathrm{B}=\lambda^{2} / 4 \mathrm{~b}^{2}, \mathrm{C}=\lambda^{2} / 4 \mathrm{c}^{2}$, and $\lambda_{\mathrm{c}} \kappa_{\mathrm{s}}=1.5405 \AA$. The combination of the various observational equations led to a set of four normal equations:

$$
\begin{aligned}
& \mathrm{A} \Sigma \alpha^{2}+\mathrm{B} \Sigma \alpha \beta+\mathrm{C} \Sigma \alpha \gamma+\mathrm{D} \Sigma \alpha \delta=\Sigma \alpha \sin ^{2} \theta \\
& \mathrm{~A} \Sigma \alpha \beta+\mathrm{B} \Sigma \beta^{2}+\mathrm{C} \Sigma \beta+\mathrm{D} \beta \delta=\Sigma \beta \sin ^{2} \theta \\
& \mathrm{~A} \Sigma \alpha \gamma+\mathrm{B} \Sigma \beta \gamma+\mathrm{C} \Sigma \gamma^{2}+\mathrm{D} \Sigma \gamma \delta=\Sigma \gamma \sin ^{2} \theta \\
& \mathrm{~A} \Sigma \delta \delta+\mathrm{B} \beta \delta \delta+\mathrm{C} \gamma \delta \delta+\mathrm{D} \Sigma \delta^{2}=\Sigma \delta \sin ^{2} \theta
\end{aligned}
$$

$\Delta \mathrm{A}, \Delta \mathrm{B}$, and $\Delta \mathrm{C}$ were then calculated with the same method suggested by Cohen. Table 1 shows the procedure estimated for $\mathrm{Na}_{3,2} \mathrm{Yb}_{0,7} \mathrm{Si}_{2}, \mathrm{P}_{0}, \mathrm{O}_{\mathrm{e}}$, . Table 2 is the result for $\mathrm{Na}_{3,2} \mathrm{M}_{0,7}$ $\mathrm{Si}_{2}, \mathrm{P}_{0}, \mathrm{O}_{\mathbf{3}}$, using the same procedure described above.

References

1. I. Maki and T. Sugimura, Yogyo-Kyokai-Shi, 78(4), 129 (1970).
2. P. Mondal and J.W. Jeffery, Acta Crystallogr., B31, 689 (1975).
3. M. Regourd, S. Chromy, L. Hjorth, B. Mortureux, and A. Guinier, J. Appl. Crystallogr., 6, 355 (1973).
4. R.D. Shannon, T.E. Gier, C.M. Foris, J.A. Nelen, and D.E. Appleman, Phys. Chem. Miner., 5, 245 (1980).
5. (a) M.U.Cohen, Rev. Sci. Instrum., 6, 68 (1935); (b) Ibid., 7, 155 (1936).
6. H.P. Klug and L.E. Alexander, X-Ray Diffraction Procedure For Polycrystalline and Amorphous Materials, 2nd ed., pp. 606, John Wiley \& Sons, New York, 1974.
7. B.D. Saksena, K.C. Agarwal, and G.S. Jauhri, Trans. Faraday Soc., 59, 276 (1963).
8. (a) F. Matossi and H. Krüger, Z. Phys., 99, 1 (1936); (b) G.B. Bokii and I.I. Plyusnina, Nauch. Dokl. Vyssh. Shkoly (Geologe-Geogr. Nauki), No. 3, 116 (1958); (c) I.I. Plyusnina and G.B. Bokii, Kristallografiya, 3, 752 (1958).
9. A.N. Lazarev, Vibrational Spectra and Structure of Silicates, pp. 82, translations ed., V.C. Farmer, Consultants Bureau, New York, 1972.
10. (a) H.G. Heide. K. Boll-Dornberger, E. Thilo, and E.M. Thilo, Acta Crystallogr., 8, 425 (1955); (b) I.I. Plyusnina and G.B. Bokii, Krystallografiya, 3, 752 (1958).
