as in the case of coumarin but $\lambda_{\text {max }}$ is very much red-shifted suggesting that $\mathrm{DMC} \cdot \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ complexation extends conjugation, probably resonance interaction between methoxy groups and BF_{3} as shown in Fig. 4. The large contribution of resonance structure (II) may inhibit the photodimerization reaction because the 3,4 -double bond character of DMC$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ complex is greatly decreased by $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ complexation and photodimerization quantum yields decrease with increasing $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ concentration.

In conclusion, an increase or decrease of the photodimerization efficiency of coumarin and DMC on addition of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ are not due to acceleration of the reaction rate of the excited states involved, but to complexation between the ground state of the compounds and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ prior to excitation.

Acknowledgements. This investigation was supported by US PHS Grant Number 5 R01 CA 212729, awarded by the National Cancer Institute, DHHS, USA and by the korea Science and Engineering Foundation Grant.

Reference

1. I. Flemming, "Frontier Orbitals and Organic Chemical Reactions", Wiley, New York, 1976, pp 214-223.
2. K.N. Houk and R.W. Strozier, J. Am. Chem. Soc., 95, 4094 (1973).
3. F.D. Lewis and J.D. Oxman, J. Am. Chem. Sac., 103, 7345 (1981).
4. F.D. Lewis, J.D. Oxman, L.L. Gibson, H.L. Hampsch and S.L. Quillen, J. Am. Chem. Soc., 108, 3005 (1986).
5. F.D. Lewis, D.K. Howard, S.V. Barancyk and J.D. Oxman, J. Am. Chem. Soc., 108, 3016 (1986).
6. F.D. Lewis, D.K. Howard, J.D. Oxman, A.L. Upthagrove and S.L. Quillen, J. Am. Chem. Soc., 108, 5964 (1986).
7. N.W. Alcock, N. Herron, T.J. Kemp and C.N. Shoppe, J. Chem. Soc., Chem. Commun, 785 (1975).
8. P. Praetorius and F. Korn, Ber., 43, 2774 (1910).
9. F.D. Lewis, D.K. Howard and J.D. Oxman, J. Am. Chem. Soc., 105, 3344 (1983).
10. F.D. Lewis and J.D. Oxman, J. Am. Chem. Soc., 106, 466 (1984).
11. C.G. Hatchard and C.A. Parker, Proc. Roy. Soc. (London) A 235, 518 (1956).
12. S.C. Shim, K.Y. Choi and P.-S. Song, Photochem. Photobiol, 27, 25 (1978).
13. R.C. Paul and S.L. Chadha, Aust. J. Chem., 22, 1381 (1969).
14. J.R. Lakowich, "Principles of Fluorescence Spectroscopy," Plenum Press, New York.
15. P.S. Song and Q. Chae, J. Luminesc., 12/13, 831 (1976).

Comparing the Stability of Geometrically rigid Tricyclopropyl Carbinyl Cations by ${ }^{19}$ F NMR Spectroscopy

Jung-Hyu Shin*, Kyongtae Kim, and Hun-Woo Shin
Department of Chemistry, Seoul National University, Seoul 151. Received January 13, 1987

Abstract

The relative stability as function of geometry in the rigid tricyclopropylcarbinyl cations with varied bond angle (a) between the plane of cyclopropane ring and the bond connecting cyclopropane ring to cationic carbon was examined by ${ }^{19} \mathrm{~F}$ nur spectroscopy. 7-p-Fluorophenyltricyclo[2.2.2.0 $\left.0^{2.6}\right]$ octan-7-y]/4) and 8 -p-fluorophenyltricyclo[3.2.2.0 ${ }^{2,7}$]nonan-8-yl cation (8) were generated from corresponding tertiary alcohols under stable ion conditions, and their 19 F chemical shifts were compared with those of model compounds such as 7-nortricyclyl cation (3) and tricyclo[3.3.1.02.7]octan.8-yl cation (7). Consequently, it is concluded that the varied orientation of bond angle (a) within in the bisected conformation does not affect degree of the charge delocalization into cyclopropane ring.

Among neighboring groups which provide stabilization to adjacent carbocationic center, the effectiveness of the cyclopropyl group is well documented. ${ }^{1}$ The very large conjugative interaction between a strained cyclopropane bonds and adjacent empty or developing p orbital has been the object of continuing wide interest. The "bisected" conformation ($1, \theta=0^{\circ}$) of a cyclopropyl cation is energetically favored over the "perpendicular" one (2, $\theta=90^{\circ}$) by about

1

2

4

8

Figure 1
$16 \mathrm{kcal} / \mathrm{mol} .^{2}$ Recently, it has been demonstrated that a cyclopropylcarbinyl cation is also stabilized when the conformation of the system is locked by structural constraints at an intermediate position between bisected and perpendicular conformation. ${ }^{3}$ Indeed, the change in energy of a cyclopropylcarbinyl cation upon rotation of the cation center

Conclusion

The studies of ${ }^{19} \mathrm{~F}$ nmr on relative stability in closely related series of rigid tricyclopropylcarbinyl cations confirm that the bond angle (a) between the plane of cyclopropane ring and the bond connecting cyclopropane ring to the cationic carbon in the geometrically rigid tricyclopropylcarbinyl cations, appears to exert little influence on the degree of charge delocalization into cyclopropane ring. Futhermore, the bisected geometry may be the most favored for the interaction (σ-conjugation) between cyclopropane ring and the adjacent carbenium ion center.

Experimental Section

${ }^{1} \mathrm{H} \mathrm{nmr}$ spectra were obtained in CDCl_{3} at 100 MHz , using a Varian XL-100 instrument, and chemical shifts were referenced from interal TMS. Cationic solutions were made up to approximately 10% concentration by adding the corresponding carbinol in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ to a stirred $\mathrm{FSO}_{3} \mathrm{H}-\mathrm{SO}_{2} \mathrm{ClF}$ solution at $-120^{\circ} \mathrm{C}$ using a cation generation apparatus. The chemical shifts in ${ }^{19} \mathrm{~F}$ nmr spectra were referenced from external CFCl_{3}.

Synthesis of ketones

Tricyclo[3.2.1.0 ${ }^{2,7}$]octa-3-one (A). The ketone was prepared according to the modified method of the procedure of W.R. Moore et al. ${ }^{8}$: 3,4-Dibromobicyclo[3.2.1.]octa-2,6 diene, prepared from the reaction of 31 g (0.35 mole) of norbornadiene and 39 g (0.25 mole) of bromoform in the presence of TEBAC in $50 \% \mathrm{KOH}$ solution, was reduced with LAH to give 18 g of 3-bromobicyclo[3.2.1]octa-2,6-diene (A-1). To the monobromodiene (A-1) was added 10 ml of 90% sulfuric acid at once at $0^{\circ} \mathrm{C}$. The mixture was stirred vigorously for 4 min and neutralized with $\mathrm{Na}_{2} \mathrm{CO}_{3}$. Column chromatography (Silica gel/n-hexane) gave 3.5 g of yellow oil (A) : ${ }^{1} \mathrm{H} \mathrm{nmr} ; 1.35-2.3(\mathrm{~m}, 10 \mathrm{H})$.

Tricyclo[3.2.2.0 ${ }^{2,7}$]nonan-3-one (B). The ketone was prepared according to modified method of W.v.E. Deering et al. ${ }^{9}$: Ethyl 3-cyclohexene-1-carboxylate was prepared from the Diels-Alder reaction of 10 g (0.1 mole) of ethyl acrylate and 16.3 g (0.32 mole) of butadiene in the presence of AlCl_{3}. and was hydrolyzed and reacted with thionyl chloride to give 10 g of 3 -cyclohexene-1-carboxylic acid chloride (B-1). The diazoketone was prepared from 10 g of the acid chloride ($\mathrm{B}-1$)
and diazomethane in ether, and rearranged to give 8 g of 3-cyclohexene-1-yl acetic acid (B-2) in the presence of $\mathrm{Ag}_{2} \mathrm{O}$. And 8 g of the acid (B-2) was chlorinated by thionyl chloride and reacted with diazomethane to give diazoketone, 6 g of which was cyclized under the catalyst of Cu powder to give 1.5 g of the ketone (B).

Synthesis of carbinols

The carbinols were prepared by the Grignard reaction of the corresponding ketone with p-fluorobromobenzene in dry ether.
7-p-Fluorophenyltricyclo[2.2.1. $0^{2,6}$]octan-7-ol; ${ }^{1} \mathrm{H} \mathrm{nmr}$; $1.0-2.5(\mathrm{~m}, 11 \mathrm{H}) 7.0(\mathrm{t}, 2 \mathrm{H}) 7.5(\mathrm{q} .2 \mathrm{H}),{ }^{19} \mathrm{~F} \mathrm{nmr}=-116.4$, $m p=59-62^{\circ} \mathrm{C}$.
8-p-Fluorophenyltricyclo[3.2.2.0 ${ }^{2,7}$]nonan-8-ol; ${ }^{1} \mathrm{H}$ nmr; $0.9-2.5(\mathrm{~m}, 10 \mathrm{H}) 2.8(\mathrm{~s}, 1 \mathrm{H}) 6.9(\mathrm{t} .2 \mathrm{H}) 7.3(\mathrm{q}, 2 \mathrm{H}){ }^{19} \mathrm{~F}$ $\mathrm{nmr}=-115.6$.
Acknowledgement. This work was supported by the Basic Science Research Institute (1985), Ministry of Education, Republic of Korea.

References

1. R. Hoffman, C.F. Wilcox and L.M. Loew, J. Am. Chem. Soc., 95, 8192 (1973).
L. Radom, J.A. Pople and P.V.R. Schleyer, ibid, 94, 5935 (1972).
2. J.E. Baedwin and W.D. Fogelson, ibid, 90, 4311 (1968). B. Anderison and Otto Schallner, ibid, 97, 3521 (1975).
3. Y.E. Rhodes and V.G. Difate, ibid, 94, 7582 (1972). J.M. Harris and J.R. Moffat, J. Org. Chem., 47, 2740 (1982).
4. J.H. Shin and B.H. Yoon, J. Korea Chem. Soc., 29, 213 (1985).
5. H. Günther, 'NMR Spectroscopy', John Wiley and Sons, 1980.
6. R.W. Taft and C.D. McKeever, J. Am. Chem. Sac, 87, 2488 (1965).
7. H. Volz and R. Miess, Tetrahedron Lett., 1665 (1975).
H. Hittler, Dissertation, Karlsruhe (TH), W. Germany (1978).
8. W.R. Moore, W.R. Moser and J.E. Laprade, J. Org. Chem., 28, 2200 (1963).
9. W.V.R. Doering et al, Tetrahedron, 21, 25 (1965).
