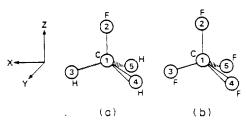
Theoretical Analysis of Dipole Moment Derivatives in Fluoromethanes. (III) CH₃F and CF₄

Kwan Kim* and Cheol Woo Park

Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151 Received February 23, 1987

The results of an ab initio (6-31G) molecular orbital calculations of the dipole moment derivatives and gas phase IR intensities in CH_3F and CF_4 are reported. The results are compared with corresponding values obtained from a CNDO calculation. We have also analyzed the theoretical polar tensors into the charge, charge flux, and overlap contributions. The effective term charges of hydrogen atom appeared to be transferable among the fluoromethane molecules.

Introduction


One of the fundamental challenges facing a vibrational molecular spectroscopist is to predict the spectrum of a new molecule from a knowledge of the spectra of a set of similar model compounds. A great deal of empirical experience exist¹ to help us predict semi-quantitatively the frequencies of characteristic fundamental modes, and we understand how to carry out normal coordinate analyses to predict, in principle, the normal frequencies for all the fundamental modes of the new molecule using force constants transferred from model compounds. However, the prediction of the intensities is much more challenging.

This challenge has been the basis for many of the intensity studies made in the past. One of the earliest ideas was the "bond moment hypothesis" which was very soon found to be too naive², followed by various "modified bond moment hypotheses"³, which were not widely accepted. The most successful models for predicting intensities of new molecules from intensity parameters transferred from simple model compounds were the "electrooptical parameter" model⁴ and the "atomic polar tensor" (APT) concept⁵. Successful predictions of vibrational band intensities for new molecules have already been made and the possibilities for future successful extensions of these methods seem very promising, indeed⁶.

Newton et al.⁷ used the APTs for H and F atoms of $CH_{2}F$ to predict the intensities of the fundamental vibrations of CF_4 , CHF_3 , and CH_2F_2 . The predicted values agreed with the experimental values within a factor of 2, and often were much better. However, there is no obvious a priori reason that the APTs of H and F atoms should be transferable among the fluoromethanes. In order to rationalize these observations, and to discover their relevance to the interpretation and prediction of vibrational line strengths, the dependence of polar tensors upon molecular structure must be examined in detail. To this end, we have performed theoretical analyses on the dipole moment derivatives and the infrared intensities of the fundamental vibrations of fluoromethanes. In earlier papers in this series we have reviewed the APTs of CHF38 and CH2F29. As a continuation, the results on CH₃F and CF₄ are presented here.

Calculations

The positions of the CH_3F and CF_4 molecules in the Cartesian axis system are depicted in Fig. 1(a) and 1(b),

Figure 1. Definition of the Cartesian coordinate systems of CH_3F (a) and CF_4 (b).

respectively. The dipole moment vector points from the center of negative charge to the center of positive charge. The sign of a dipole moment component is positive when the component vector points in the positive axis direction. The calculations are performed at the experimental geometry¹⁰⁻¹¹. To obtain the elements of the APTs the numerical difference approximation $\partial P/\partial \sigma \simeq \Delta P/\Delta \sigma$ employed, with $\Delta \sigma = 0.02$ Å. We have used two distinct quantum mechanical programs, one based on the CNDO method¹², the other on the ab initio method. The ab initio calculations were carried out with the GAUSSIAN-70 program¹³ using the 6-31G basis set.

The detailed description of how the fundamental intensities are derived from the atomic polar tensors (or vice versa) is given elsewhere¹⁴. Briefly, once the APTs are given in the correct molecular coordinate frames, the P_Q matrix composed of the Cartesian components of the dipole moment derivatives with respect to the normal coordinates is obtained by

$$P_{\mu} = P_{x}AL, \qquad (1$$

Where P_x is the 3 × 3n (n = the number of atoms) matrix composed of the n juxtaposed 3 × 3 APTs, A is the symmetrized A matrix (the inverse of the Wilson's B matrix including the six Eckart conditions), and L is the symmetrized normal coordinate transformation matrix⁵. The absolute intensity for the i-th fundamental band (A_i) is related to the P_Q elements, $\partial P/\partial Q_n$ by¹⁵,

$$A_{i} = (974, 8644) \left(\frac{\partial P}{\partial Q_{i}}\right)^{2} \quad (\text{km} \cdot \text{mole}^{-1})$$
(2)

if $\partial P/\partial Q_i$ is in eu^{-i/2} (u designates atomic mass unit and e the charge on the electron: $le = 1.602 \times 10^{-19}$ C).

The equilibrium structural data and the definition of the internal and symmetry coordinates are listed in Table 1. The normal coordinates calculated using the force fields reported in ref. (10) and ref. (16) are given in Table 2.

Table 1. Structural Data and Definition of Internal and Symmetry Coordinates for CH_3F and CF_4

Masses(u) ^q	: m _C = 12.0	$0, m_H = 1.0078$	25. $m_D = 2.014102$.
	$m_{E} = 18.9$	998405	
Structure :	CHAF* R	_H = 0.1095 nm,	$R_{CF} = 0.1382 \text{ mm}$.
	HCH = 11		
	CF4 ^C R _{CF}	r = 0.1320 nm	
Internal cor	ordinates ^d :	$R_1 = \delta r_{12}$	$R_6 = \delta_{\alpha 315}$
		$R_2 = \delta r_{13}$	$R_7 = \delta a_{314}$
		$R_3 = \delta_{\Gamma_{14}}$	$R_8 = \delta \sigma_{213}$
		$R_{a} = \delta_{r_{15}}$	$R_9 = \delta a_{214}$
		$R_5 = \delta_{\alpha} + 15$	$R_{10} = \delta \alpha_{215}$
Symmetry	coordinates	se:	
$CH_3F(C_{3r})$			
	$S_1 = (1/\sqrt{3})$	$(R_2 + R_3 + R_4)$)
A ₁	$S_2 = a(R_5)$	$+ R_6 + R_7) - b($	$R_8 + R_9 + R_{10}$
-	$S_3 = R_1$		
	$S_{4} = 1/\sqrt{6}$	$(2R_2 - R_3 - R_4)$	
Ε,	$S_5 = 1/\sqrt{6}$	$S(2R_5 - R_6 - R_7)$	
-1 1	$S_6 = 1/\sqrt{6}$	(2R8-R9-R10)	
	v	÷ .	

$$S_7 = 1/\sqrt{2}(R_3 - R_4)$$

$$E_y \qquad S_8 = 1/\sqrt{2}(R_6 - R_7)$$

$$S_9 = 1/\sqrt{2}(R_9 - R_{10})$$

A₁
$$S_{red} = b(R_5 + R_6 + R_7) + a(R_8 + R_9 + R_{10})$$

a = 0.399889, b = 0.416440

 $CF_4(T_d)$

- 4\ • a /	
A ₁	$S_1 = 1/2(R_1 + R_2 + R_3 + R_4)$
Ex	$S_2 = 1 / \sqrt{12} (2R_5 - R_6 - R_7 + 2R_8 - R_9 - R_{10})$
Ey	$S_3 = 1/2(R_6 - R_7 + R_9 - R_{10})$
F	$S_4 = 1/\sqrt{6}(2R_2 - R_3 - R_4)$
F _x	$S_5 = 1/\sqrt{12}(2R_5 - R_6 - R_7 - 2R_8 + R_9 + R_{10})$
F	$S_6 = 1/\sqrt{2}(R_3 - R_4)$
Fy	$S_7 = 1/2(R_6 - R_7 - R_9 + R_{10})$
	$S_8 = 1/\sqrt{12}(3R_1 - R_2 - R_3 - R_4)$
F,	$S_9 = 1/\sqrt{6}(R_5 + R_6 + R_7 - R_8 - R_9 - R_{10})$
A ₁	$S_{red} = 1/\sqrt{6}(R_5 + R_6 + R_7 + R_8 + R_9 + R_{10})$

^{*a*}Ref. (18), ^{*b*}Ref. (10), ^{*c*}Ref. (11), ^{*d*}The subscripts refer to the atoms shown in Figure 1: r_{ij} and a_{ijk} represent, respectively, the appropriate bond-length and bond-angle. ^{*c*}S_{red} is a redundant coordinate.

The calculated atomic polar tensor elements are also analyzed in terms of the quantum mechanical charge, charge flux and overlap (CCFO) model. Details of the charge-charge flux-overlap electronic contributions to the dipole derivatives have been described previously¹⁷. Briefly, the APT of an atom (p_x^e) can be identified with three contributing terms.

$$P_{x}^{a} = \zeta_{\alpha} I + \sum_{\beta} \left(\nabla_{\alpha} \zeta_{\beta} \right) R_{\beta} - \sum_{\beta} \nabla_{\alpha} \Phi_{\beta\beta} \left(R \right), \tag{3}$$

where ζ is Mulliken's net atomic charge and

$$\nabla_{\alpha} \Phi_{\beta\beta} \equiv \sum_{i\neq j} \langle \psi_i (r_{\beta}) | r_{\beta} | \psi_j (r_{\beta}) \rangle \nabla_{\alpha} N_{\beta\beta}^{ij}$$
(4)

In eqn. (4), $r_{\theta} \equiv r - R_{\theta}$ denotes a position vector relative to nucleus β and $N_{\theta\theta}^{ij}$ denotes the structure dependent expansion coefficient when the electron density function is represented as a superposition of terms involving products of

Table 2. Harmonic force field and normal coordinates of CH_3F and CF_4

Harmo	mic fr	orce constants	(Nm-1);		
CH_3F^a	A ₁	K ₁₁ = 524.8,	$K_{12} = -22.2,$	$K_{22} = 75.7$	$K_{13} = 38.5,$
	-	$K_{23} = -66.8,$	$K_{33} = 569.2$		
	E_x^d	$K_{44} = 527.6,$	$K_{45} = -13.2,$	$K_{55} = 57.8$,	$K_{46} = 17.6,$
		$K_{56} = -6.6$.	$K_{66} = 90.6$		
$CF_4^{\ b}$	$\mathbf{F}_{\mathbf{x}}^{d}$	$K_{44} = 622.0,$	$K_{45} = 110.9$,	$K_{55} = 176.0$	
Normal	coor	dinates (u ^{-1/2}) ^c :			

	CH ₃ F	Qı	Q_2	Q3
	S ₁	1.00478	0.08716	-0.00521
A ₁	S2	-0.21241	1.37009	0.17050
1	S_3	-0.04999	0.07428	0.35770
		\mathbf{Q}_4	Q_5	Q ₆
	S ₄	1.05086	0.01273	-0.01658
E, ^d	S ₅	0.11993	1.49969	-0.18062
~	S ₆	-0.10263	0.28246	0.95217
	CF ₄	Q_3	\mathbf{Q}_4	
- 4	S4	0.40020	0.05986	
F_x^d	S ₅	-0.46728	0.31168	

^aRef. (10), ^bRef. (16), ^cThe indices labelling the normal coordinates of CH₃F and CF₄ correspond to the labels identifying the vibrational modes given in ref. (10) and ref. (16), respectively. ^dThe K and L elements for the E_y(or F_y and F_z) block are identical with those of the E_y(or F_z) block.

complete orthonormal functions, $\{\phi_j(\mathbf{r}_a)\}$, centered on each nucleus. The calculated contributions of each term in eqn.(3) will be presented in the following section.

Results and Discussion

The quantum mechanically calculated APTs for the C(1), F(2), and H(3) atoms of CH₃F in Figure 1(a) and for the C(1), F(2), and F(3) atoms of CF₄ in Figure 1(b) are listed in Table 3 along with the corresponding APTs derived from the analysis of the reported experimental intensities^{7,19}. The experimental values were obtained in view of the quantum mechanically calculated signs for the dipole moment derivatives with respect to the normal coordinates, $\partial P/\partial Q_i$, of CH₃F and CF₄. The APTs for the atoms not shown in Table 3 can be obtained by the transformation equation²⁰, T' = R'TR. Here T is the P_X^{F12} tensor of CH₃F or the P_X^{F12} tensor of CF₄, R is the coordinate (rotation) transformation matrix, R' is its transpose, and T' is the tensor in the rotated coordinate system.

It can be seen from Table 3 that the agreement between the theoretical values and the experimental values is, in general, quite good. The signs of each elements are consistent with one another. The ab initio calculations are, however, in better agreement with experiment. One noticeable feature is that the CNDO calculated zz elements of $P_X^{F/2}$ are significantly smaller (in absolute value) than those from experiments for both molecules, CH₃F and CF₄.

It would be very interesting to compare the F atom polar tensors of various fluoromethanes. For that purpose, we chose the z-axis along the C-F bond. It is seen from the

CH ₃ F		C(1)			F (2)			H(3)	
6-31G	$\begin{bmatrix} 0.482\\ 0\\ 0\end{bmatrix}$	0 0.482 0	0 0 0.945]	-0.371 0 0	0 -0.371 0	0 0 -0.903	(-0.148 0 0.036	0 0.074 0	0.060 0 -0.014
CNDO/2	0.460	0	0	(-0.293	0	0	(-0.119	0	0.007
	0	0.460	0	0	-0.293	0	0	0.008	0
	0	0	0.608	0	0	-0.530	0.046	0	-0.026
Expt']ø	0.33	0	0	(-0.26	0	0	(-0.12	0	0.04
	0	0.33	0	0	-0.26	0	0	0.07	0
	0	0	0.96	0	0	-0.93	0.07	0	-0.01
CF4		C(1)			F(2)			F(3)	
6-31G	2.210	0	0	(-0.434	0	0	(-0.750	0	0.112
	0	2.210	0	0	-0.434	0	0	-0.434	0
	0	0	2.210	0	0	_0.790	0.112	0	-0.474
CNDO/2	1.972	0	0	(-0.442	0	0	(-0.578	0	0.048
	0	1.972	0	0	-0.442	0	0	-0.442	0
	0	0	1.972	0	0	-0.595	0.048	0	-0.459
Expt'le	$\begin{bmatrix} 2.11 \\ 0 \\ 0 \end{bmatrix}$	0 2.11 0	0 0 2.11	(-0.33 0 0	0 -0.33 0	0 0 -0.92	(-0.85 0 0.19	0 -0.33 0	0.19 0 -0.40

Table 3. Atomic Polar Tensors of CH3F and CF4 in Units of e's^a

^aAPTs correspond to those of atoms numbered in Figure 1. ^bRef. (7), ^cComputed from data in ref. (19).

analysis of the reported experimental intensities that the values of the zz elements for CF_4 , CHF_3 , CH_2F_2 , and CH_3F are -0.92, -0.95, -0.88, and -0.93e, respectively (see Table 3 of this paper and Table 5 of ref. (9)). The corresponding values for the xx (yy) elements are -0.33, -0.29, -0.25, and -0.26e. We see that the APTs of F atoms are indeed transferable among the fluoromethane molecules. The average values of the zz and xx (yy) elements are -0.92 and -0.28e, respectively. These values are supposed to be useful in the prediction of the band intensities in the complex fluoromolecules.

The transferability of the F-atom tensors is also confirmed from the theoretical calculations. According to the ab initio calculations, the zz elements for CF_4 , CHF_3 , CH_2F_2 , and CH_3F are -0.79, -0.89, -0.91, and -0.90e, respectively. The corresponding values for the xx (yy) elements are -0.43, -0.43, -0.38, and -0.37e. The average values of the zz and xx (yy) elements are -0.87 and -0.40e, respectively. Although the calculated xx (yy) element is somewhat larger than that from experiment, the zz elements are comparable with each other. Nevertheless, the transferability of polar tensors seems obvious for fluorine atoms.

In the CNDO limit, the zz elements for CF_4 , CHF_3 , CH_2F_2 , and CH_3F are found to be -0.60, -0.61, -0.58, and -0.53e, respectively. The corresponding values for the xx (yy) elements are -0.44, -0.39, -0.35, and -0.29e. The average values for the zz and xx (yy) elements are -0.58 and -0.37e, respectively. The transferability of the F atom tensors is again evident in the semi-empirical calculations. As noticed above, the CNDO calculated zz element is substantially smaller (in absolute value) than the experimental one.

The difference between the experimental and theoretical values of the tensor components is presumably a measure of the errors introduced by the particular basis set used and the neglect of configuration interaction. The almost perfect correlation between experiment and theory suggests that, if self-consistent approximations are made, it might be possible to correct for these errors empirically, for some classes of systems.

The calculated effective charges of F atoms (χ_F) in the fluoromethanes fall within narrow ranges of values. The effective charge (χ) is defined²¹ as the square root of one third of the sum of squares of the components of the atomic polar tensor. The observed χ_F values are 0.60, 0.60, 0.57, and 0.58e, respectively, for CF₄, CHF₃, CH₂F₂, and CH₃F. The corresponding theoretical values are 0.58, 0.62, 0.62, and 0.60e from the ab initio calculations and 0.50, 0.48, 0.44, and 0.39e from the semi-empirical calculations⁹. Although the CNDO results deviate significantly from the experimental values, the ab initio calculated values are in good agreement with the experimental ones. Furthermore, it is evident that the effective charge of F atom is independent of the particular fluoromethane molecule.

In order to compare the H atom polar tensors of various fluoromethanes, we chose the z-axis along the C-H bond. From the analysis of experimental data, it is found that the values of the zz elements for CH_4 , CH_3F , and CH_2F_2 are -0.13, -0.14, and -0.14e, respectively. The averaged values of the xx and yy elements are 0.06, 0.04, and 0.03e, respectively, for CH_4 , CH_3F , and $CH_2F_2^9$. It is seen that the zz element of CH_3F is in quite good agreement with those in CH_4 and CH_2F_2 . On the other hand, the averaged value of the xx and yy elements decreases as the number of fluorine atoms bonded to the central carbon atom increases. These observations suggest that the transverse component is more sensitive to the neighbor H-F interactions. Similar trend is observed from the ab initio calculations. The calculated zz elements are -0.18, -0.16, and -0.15e for CH_4 , CH_3F , and

Table 4. Calculated Intensities of CH₃F and CD₃F

	Band		Intensities (km+mole-1)			
	ν	(cm ⁻¹)	6-31G	CNDO/2	Observed	
	A ₁ :	v ₁ (2910)	12.4	14.0	24.6	
	-	v ₂ (1460)	4.11	2.49	0.89	
		v ₃ (1049)	102	36.1	95.0	
	E :	v ₄ (3006)	103	59.2	60.8	
CH ₃ F		v ₅ (1468)	6.79	0.04	8.6	
•		v ₆ (1182)	0.53	12.5	2.6	
		SUM	229	124	193	
		¥1+V4	115	73.2	85.4	
		$v_2 + v_5$	10.9	2.5	9.5	
		V3+V6	103	48.6	97.6	
	A ₁ :	ν ₁ (2110)	14.4	12.0	22.2	
		v ₂ (1135)	47.5	18.5	42.1	
		v ₃ (992)	54.7	18.0	74.1	
	Е:	ν ₄ (2259)	66.0	42.2	39.6	
CD ₃ F		ν ₅ (1071)	1.66	0.61	4.8	
÷		ν ₆ (911)	3.59	10.8	0.36	
		SUM	188	102	183	
		V1 + V4	80.4	54.2	61.8	
		$\nu_2 + \nu_5$	49.2	19.1	46.9	
		$\nu_{3} + \nu_{6}$	58.3	28.8	74.5	
		$v_{3} + v_{5}$	56.4	18.6	78.9	

^aRef. (22).

 CH_2F_2 , respectively. The corresponding values for the averaged xx and yy elements are 0.09, 0.04, and 0.02e. It thus appears that, for the prediction of infrared spectra of complex hydrocarbons containing fluorine atoms, some empirical adjustment of H-atom polar tensor can be made depending on the number of F atoms bound to certain carbon atom.

The intensities calculated for the fundamental vibrations of CH_3F and CD_3F are compared with the experimental values in Table 4. The ab initio calculated intensities appear, in general, to be more reasonable than the CNDO results.

The calculated intensity for the A₁ type CH (CD) stretching mode (v_1) is about one half of the observed value. The ab initio calculated value for the E type CH (CD) stretching mode (v_4) is nearly 70% larger than the experimental value. On the other hand, the CNDO calculated intensities are close to the observed ones. Nevertheless, considering that the v_1 and v_4 modes are somewhat overlapped, the agreement between the experimental and predicted intensities is expected to be better if they are summed. As shown in Table 4, we see that the agreement is indeed much better.

The two CH₂ bending modes (ν_2 and ν_5) are badly overlapped with each other. Once again, the summed intensity is expected to be used in the comparison of the calculated and observed intensities. The ab initio calculated intensity sum for those two bands is apparently close to the experimental data. However, the corresponding value from the semi-empirical calculations is about one fourth of the experimental intensity. The ab initio calculations are more reasonably correlated with the experimental values also for the ν_2 and ν_5 bands of CD₃F. Similar trends are observed for the CF stretching (ν_3) and HCF (DCF) bending (ν_6) modes. It is noteworthy that the CNDO calculated intensities of the ν_3 and ν_6

Table 5. Calculated Intensities of CF₄ Fundamentals

Band	Intensities (km·mole ⁻¹)					
ν,(cm ⁻¹)	6-31G	CNDO/2	APT 1ª	APT 28	Observed	
F: v ₃ (1280)	1328	1017	1358	1100	1080	
v ₄ (631)	67.2	83.3	37.8	9.4	11.7	

^aPredicted intensities using the P_{F}^{F} tensor of CH₃F obtained from the 6-31G calculation. See Table 3. ^bPredicted intensities using the P_{F}^{F} tensor of CH₃F obtained from the analysis of observed intensity data. See Table 3. ^cAverage of five independent experimental measurements found in the literature. See ref. 7.

Table 6. Comparison of Fluorine Atom Polar Tensors in CH_3F and CF_4 in Atomic Units(e)²

			$\partial \mathbf{P}_{\mathbf{x}} / \partial \mathbf{X}_{F_2}^{\mathbf{b}} (= \partial \mathbf{P}_{\mathbf{y}} / \partial \mathbf{Y}_{F_2})$	$\partial P_z / \partial Z_{F_2}{}^b$
		CNDO	-0.194	-0.194
	charge	6-31G	-0.455	-0.455
	abarga flur	CNDO	-0.026	-0.332
CH ₃ F	charge-flux	6-31G	0.025	-0.404
·3.		CNDO	-0.073	-0.004
	overiap	6-31G	0.059	-0.044
		CNDO	-0.293	-0.530
	APT	6-31G	-0.371	-0.903
		Expt'l	-0.26	-0.93
		CNDO	-0.202	-0.202
	charge	6-31G	-0.346	-0.346
		CNDO	-0.084	-0.370
CF₄	charge-flux	6-31G	-0.021	-0.136
CI 4		CNDO	-0.156	-0.023
	overlap	6-31G	-0.067	-0.308
		CNDO	-0.442	-0.595
	APT	6-31G	-0.434	-0.790
		Expt'l	-0.33	-0.92

^a The charge, charge-flux, and overlap contributions correspond to the first, second, and third terms, respectively, in equation (3). ^bAPTs for the F(2) atoms in Figure 1. 'See Table 3.

modes in both molecules, CH_3F and CD_3F , are significantly different from the observed values. In order to gain more information on the cause of such differences, the theoretical results are analyzed for the charge-charge flux-overlap electronic contributions to the dipole derivatives. Those results will be discussed later.

In Table 5 the calculated infrared band intensities of the fundamentals of CF_4 are compared with the experimental values. The experimental values reported here are the averages of five independent measurements found in the literature⁷.

The predicted intensities for the CF stretching mode (ν_3) are in fair agreement with the observed value. On the other hand, the quantum mechanically calculated intensities for the CF₂ bending mode are six to seven times larger than the experimental intensity. It is, however, very interesting to notice that the intensities predicted by using the P_x^F tensor of CH₃F obtained from the ab initio calculations are in better agreement with the observed values. Moreover, the P_x^F tensor derived from the analysis of the experimental intensities of CH₃F reproduces the CF₄ band intensities within experimental errors, ± 177 and ± 2.2 km/mole for the ν_3 and ν_4 bands, respectively⁷. Thus, the transferability of the F-atom tensor between CH₃F and CF₄ seems to be quite good. This suggests that the C-F bonds in CH₃F and CF₄ are very similar, so that the substitution of three fluorine atoms for the hydrogen atoms in CH₃F does not significantly distort the electron density of the remaining C-F bond. For more detailed information, the CCFO electronic contributions to the dipole derivatives are computed. The results are represented in Table 6.

The transverse component of the fluorine atom polar tensor $P_{xx}^F(P_{yy}^F)$ is almost entirely due to the equilibrium net charge on the F atom. The net charge effect estimated from the ab initio method is, however, considerably larger than that from the semi-empirical method.

For the longitudinal component P_{i2}^F of CH₃F, both the net charge and the charge flux contributions are equally dominant. The quantum-mechanical overlap interaction is, in turn, less important. The ab initio calculations exhibit that the overlap contribution becomes important as the number of fluorine atoms bonded to the central carbon atom increases. Above observation represents a large charge transfer along the C-F bond during the stretching, and is indicative of the considerable electronic rearrangement that takes place as this bond is broken. In addition, it is suggested that the F-F neighbor interaction is rather strong.

In order to assess the relative importance of each of three CCFO contributions for a given tensor we may define the following quantity.

$$\xi_{\sigma}^{2} = \frac{1}{3} \sum_{\sigma} \left[\left(\frac{\partial P_{\sigma}}{\partial x_{\sigma}} \right)^{2} + \left(\frac{\partial P_{\sigma}}{\partial y_{\sigma}} \right)^{2} + \left(\frac{\partial P_{\sigma}}{\partial z_{\sigma}} \right)^{2} \right]$$
(5)

as the square of the "effective term-charge"9. According to the ab initio calculations, the effective term-charges of fluorine atom in CH₃F are 0.46, 0.23, and 0.05e, respectively, for the net charge, charge flux, and overlap contributions. The corresponding values in CF_4 are 0.35, 0.08, and 0.19e. It was reported previously9 that the corresponding values for CH₂F₂ are 0.42, 0.30, and 0.07e and for CHF₃ 0.38, 0.37, and 0.26e. It is seen that the net charge effect decreases smoothly as H-atom is replaced with F-atom. The effective term charge of the charge flux term in CF₄ is considerably smaller than those of other fluoromethanes. Otherwise, the charge flux contribution increases smoothly along with the number of F atoms bound to the central carbon atom. It thus appears that overestimation of the ab initio calculation for the fundamental intensities of CF4 arises mainly from the underestimated charge-flux contribution. The observation that the predicted intensities of CF4 by using the fluorine atom polar tensor of CH3F derived from the ab initio calcula tions are in better agreement with the observed values compared with those from the direct application of the ab initio method to CF_4 seems to support above argument.

The cause of the sudden increase of the overlap contribution in CHF_3 is not certain. In this respect, we may need more extended calculation including the configuration interaction. It is supposed that the overlap effect in CF_4 is also somewhat overestimated in the ab initio calculation.

In the CNDO limit, the effective term charges of fluorine atom in fluoromethanes are calculated to be almost the same for each CCFO contribution. The values are 0.19, 0.19, and 0.06e in CH_3F and 0.20, 0.22, and 0.13e in CF_4 for the net charge, charge flux, and overlap contributions, respectively. The corresponding values⁹ for CH_2F_2 are 0.20, 0.21, and 0.09e and for CHF_3 0.20, 0.23, and 0.11e. Both the net charge and the charge flux contributions are nearly comparable to each other regardless of particular fluoromethane molecule. Those two terms are dominant in the CNDO limit. Although the non-classical overlap term contributes less significantly to the APT of F atom, it seems interesting to notice that its effective term charge shows monotonous increase along with the number of F atoms bound to the central carbon atom.

Quantitative prediction of dipole moment derivatives is difficult, in general, from approximate quantum mechanical treatments²³. However, the fact that each kind of CCFO terms is not strongly dependent on the molecule in the CNDO limit may be informative. We believe that the abrupt changes in the effective term charges found in the ab initio calculations are somewhat erroneous. It seems to be worth, indeed, to carry out the more extended calculations including the configuration interactions.

As far as the hydrogen atom is concerned, the calculated CCFO contributions are consistent with one another along with the fluoromethane molecules. According to the ab initio calculations, the effective term charges of hydrogen atom in CH₃F are 0.16, 0.10, and 0.12e for the net charge, charge flux, and overlap contributions, respectively. On the same basis set, the corresponding values^{8,9,24} are 0.16, 0.11, and 0.09e for CH₄, 0.17, 0.09, and 0.16e for CH₂F₂, and 0.20, 0.09 and 0.20e for CHF₃. Both the net charge and the charge flux contributions are nearly comparable among the molecules. The overlap contribution increases smoothly as the number of F atoms bound to the central carbon atom increases. None of the three groups of terms can be completely neglected.

In the CNDO limit, the effective term charges of hydrogen atom in CH₃F are 0.01, 0.07, and 0.06e for the net charge, charge flux, and overlap contributions, respectively. The corresponding values^{8,9,24} for CH₄ are 0.01, 0.07, and 0.07e, for CH₂F₂ 0.01, 0.08, and 0.06e, and for CHF₃ 0.02, 0.08, and 0.04e. Although the net charge contribution is far less than those from the remaining two terms, each CCFO contributions are almost transferable between molecules considered here. From both calculations, ab initio and semi empirical, it appears that the effective charge of hydrogen atom is rather insensitive to the details of the molecular structure.

It has been mentioned previously that the CNDO calculated intensities of the ν_3 and ν_6 modes in CH₃F and CD₃F are considerably different from both the ab initio results and the observed values. The underestimation of the ν_3 band intensities is due to the relatively smaller value (absolute) of the zz element in the F atom polar tensor. The overestimation of the ν_6 band intensities is due to the small value (absolute) of the yy element in the H atom polar tensor. According to the CCFO analysis, such discrepancies seem to arise from the relatively smaller net charge contributions compared with those from the ab initio calculations.

In conclusion, we have performed ab initio and semi empirical calculations for the dipole moment derivatives of CH_3F and CF_4 . We have also analyzed the theoretical polar tensors into the charge, charge-flux, and overlap contributions. The major discrepancy between semi-empirical and ab initio calculated tensors seemed to arise from the differences in the net charge contributions. The effective term charges of hydrogen atom appeared to be transferable among the fluoromethane molecules. In the CNDO limit, the effective term charges of fluorine atom seemed also to be insensitive to the detailed molecular structure. It is hope that this is confirmed by the more extended calculations including the configuration interactions.

Acknowledgement. This work was supported in part by the Korea Science and Engineering Foundation.

References

- L. J. Bellamy, The Infrared Spectra of Complex Molecules, Vol. 1 and 2, Methuen, London (1975 and 1981).
- D. F. Hornig and D. C. Mckean, J. Phys. Chem., 59, 1133 (1955).
- W. B. Person and S. R. Polo, Spectrochim. Acta, 17, 101 (1961).
- L. A. Gribov, Intensity Theory for Infrared Spectra of Polyatomic Molecules, Consultants Bureau, New York (1964).
- W. B. Person and J. H. Newton, J. Chem. Phys., 61, 1040 (1974).
- W. B. Person and G. Zerbi, Vibrational Intensities in Infrared and Raman Spectroscopy, Elsevier, Amsterdam (1982).
- J. H. Newton, R. A. Levine, and W. B. Person, J. Chem. Phys., 67, 3282 (1977).
- 8. K. Kim, Bull. Kor. Chem. Soc., 7, 488 (1986).

- 9. K. Kim, Bull. Kor. Chem. Soc., 8, 10 (1987).
- J. L. Duncan, D. C. Mckean, and G. K. Speirs, *Mol. Phys.*, 24, 553 (1972).
- 11. L. H. Jones, B. J. Krohn, and W. C. Kennedy, J. Mol. Spectrosc., 70, 288 (1978).
- J. A. Pople and D. L. Beveridge. Approximate Molecular Orbital Theory, McGraw-Hill, New York (1970).
- W. J. Hehre, W. A. Latham, R. Ditchfield, M. D. Newton, and J. A. Pople, *Quantum Chemistry Program* Exchange, QCPE 10, 236 (1974).
- 14. K. Kim, J. Phys. Chem., 88, 2394 (1984).
- 15. K. Kim, R. S. McDowell, and W. T. King, J. Chem. Phys., 73, 36 (1980).
- 16. J. L. Duncan and I. M. Mills, Spectrochim. Acta, 20, 1089 (1964).
- 17. K. Kim and H. G. Lee, Bull. Kor. Chem. Soc., 6, 79 (1985).
- A. H. Wapstra and N. B. Gove, Nucl. Data Tables, A9, 265 (1971).
- 19. I. W. Levin and T. P. Lewis, J. Chem. Phys., 52, 1608 (1970).
- W. B. Person and J. H. Newton, J. Chem. Phys., 64, 3036 (1976).
- 21. K. Kim and W. T. King, J. Chem. Phys., 80, 983 (1984).
- J. W. Russell, C. D. Needham, and J. Overend, J. Chem. Phys., 45, 3383 (1966).
- 23. W. B. Person and D. Steele, *Molecular Spectroscopy*, Vol. 2, p357, The Chemical Society, London (1974).
- 24. K. Kim and C. W. Park, Bull. Kor. Chem. Soc., 7, 380 (1986).

Synthesis and Dissociation Constants of Cationic Rhodium (I)-Triphenylarsine Complexes of Unsaturated Nitriles and Aldehyde

Chong Shik Chin*, Jeonghan Park, Sang Young Shin, and Choongil Kim

Department of Chemistry, Sogang University, Seoul 121. Received February 23, 1987

Reactions of Rh(ClO₄)(CO)(AsPh₃)₂ with unsaturated nitriles and aldehyde, L, produce a series of new cationic rhodium (I) complexes, [RhL(CO)(AsPh₃)₂)ClO₄ (L = CH₂ = CHCN, CH₂ = C(CH₃)CN, *trans*-CH₃CH = CHCN, CH₂ = CHCH₂CN, *trans*-C₆H₅CH = CHCN, and *trans*-C₆H₅CH = CHCHD) where L are coordinated through the nitrogen and oxygen, respectively but not through the *π*-system of the olefinic group. Dissociation constants for the reaction, [RhL(CO)(AsPh₃)₂)ClO₄ \rightleftharpoons Rh(ClO₄) (CO) (AsPh₃)₂ + L, have been measured to be 1.20×10^{-4} M (L = CH₂ = CHCN), 1.05×10^{-4} M (L = CH₂ = C(CH₃)CN, 3.26×10^{-5} M (L = *trans*-CH₃CH = CHCN) and 6.45×10^{-5} M (L = CH₂ = CHCH₂CN) in chlorobenzene at 25°C, and higher than those of triphenylphosphine complexes. [RhL(CO)(PPh₃)₂]ClO₄ where L are the corresponding nitriles that are coordinated through the nitrogen atom. The differences in dissociation constants seem to be predominantly due to the differences in ΔS). The weaker Rh-N (unsaturated nitriles) bonding in AsPh₃ complexes than in PPh₃ complexes (based on 4H values) suggests that the unsaturated nitriles in **2**~5 are good *σ*-donor and poor *π*-acceptor.

Introduction

Transition metal complexes of triphenylphoshine (PPh₃) have been much more studied in general than the triphenylarsine (AsPh₂) complexes although AsPh₃, through coordination, would increase the basicity of the central metal more effectively than PPh₃, and consequently AsPh₃ complexes would undergo oxidative addition reaction more readily than PPh₃. complexes, which could be the most important step for the catalytic hydrogenation of olefins. Physical properties and catalytic activities of rhodium(I)-triphenylphosphine complexes, [RhL(CO) (PPh₃)₂]ClO₄ (L = unsaturated nitriles,¹⁻⁵ and aldehydes^{6.7} coordinated through the nitrogen and oxygen atom, respectively) have been recently investigated. It would be interesting to compare the physical properties and catalytic activities of PPh₃ complexes with those of AsPh₃