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sion between the relatively large electronic charge and bond 

pairs at the ^-carbon. The MNDO results are consistent with 

the TS where Ca-0 bond polarization is the rate-determining 

step, which follows the pre-equilibrium involving the acidic 

hydrogen shift towards the carbonyl oxygen.
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A nonlinear theory presented previously is applied to the Oregonator, which is a model for the Belousov-Zhabotinskii reac­
tion, to study instability near the critical point driven by diffusions. The result shows that the theory may be applied to an ac­
tual system.

Introduction

Theoretical and experimental studies of instability in 

chemically reacting systems date back at least to the early 

part of this century.1'2 Lotka1 proposed in 1920 a simple 

model of autocatalytic chemical reactions which shows sus­

tained oscillations in the concentration of the autocatalytic 

species when open to a flow of matter through the system. 

Bray2 discovered this kind of sustained oscillation in an in­

organic redox reaction. In 1952 Turing3 showed that stable 

spatial patterns can be obtained when chemical reactions are 

coupled to the process of diffusion. Thus, he laid the founda­

tion for a biochemical theory of morphogenesis. Much atten­

tion has been given to that subject in the past 20 years since 

the dramatic phenomena in the Belousov-Zhabotinskii (B-Z) 

reaction sparked the interest of experimentalists and 

theoreticians in chemistry and other fields.4-7

Recently Lee and his coworkers8 have proposed a 

nonlinear theory for the fluctuations of intermediates in the 

Brusselator near the critical point caused by diffusion. The 

method used9-12 is the two time scaling method which is one 

of the most widely used methods. In the conventional two 

time scaling method the whole range of time is divided into 

three regions of time. The initial region of time is the range 

of time where the linear approximation is valid. The second 

region is the region in which the nonlinear effect becomes 

important and the system approaches a steady state (or 

equilibrium state). The two time scaling method used8 is dif­

ferent from the conventional method in the sense that a slight 

nonlinear effect is included in the initial time region where 

the linear approximation is valid. Their nonlinear theory­

shows that fluctuations close to the critical point approach 
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the value of a stable steady state or deviate infinitely from an 

unstable steady state, as time goes to infinity, while the 

linear theory gives approximately time-independent fluctua­

tions.
The purpose of the present paper is to investigate that the 

nonlinear theory8 is applicable to the actual reacting system 

with the aid of the Oregonator.6'7 We first discuss the linear 

case for the Oregonator far from the steady state. Then, the 

nonlinear case is discussed with the aid of the two time scal­

ing method.

Theory

r =(加A)Z =0. 13t

孔4〜0.126 n_2k,k^
P = E = U 爲=8.4X]0 .

b z _ Dpz 2_-Dy^5 qQ牛
卩PE _財厂&9們，

广 = 을수点 7 对(广斜 .

With 나le aid of the scaled variables, the rate equations are

£-흐 = = 77’ 2 卩‘ 需:-2。尸,

a r

(5)

The overall B-Z reaction is4'7

2BrO「+3CH」COOH)2+2H+ ------느
2BrCH(COOH)2+3CO2+4HsO. ⑴

Field, Kords and Noyes proposed a complex system of 10 

chemical reactions with 7 intermediates a오 a model for the 

B-Z reaction. From this system Field and Noye응' extracted a 

simpler model that appears to retain the most important 

features of the Field-Koros-Noyes (FKN) mechanism. Their 

simplification, called the Oregonator, is given by

A + Y 电 X+P,

X+Y - 2P,

A+X - 2X+2Z, (2)
2X 丄 P+A,

Z 1므 fY,

where A is the reactant, P is the product and X,Y, and Z are 

the concentrations of the intermediates HBrO2, Br and 

Ce(IV), respectively, f is a stoichiometric factor. Taking 

[A] = 0.06M, the rate constants are given as7

知二2X10애LS= k3 = 104Af-1S-1
妇二4〉<10成-切=烷二 0.4〔BrCH(C(X)H)JST. (3)

Since the concentration of the reactant is held constant, the 

stoichiometric factor f and the rate constant k5 are con­

trollable variables. The behavior of the Oregonator depends 

critically on the values of f and k5.7

Including the diffusions of the intermediates, the rate 

equations are

^-X^D^X+k.AY-k.XY+k^X-Zk.X2, 

d t

으 一加(4)

으 ZTWZ+EYf Z,

where % Dyf and 0 are the diffusion coefficients of the in­

termediates X, Y, and Z, respectively. In order to simplify 

above differential equations, let ns introduce the following 

transformation for the variables

l쓰XML 6x "〔HBrOj, 尸笞匸3. 3x "〔Br" 
KyA

2=味씁sZML3xl()7〔Ce(IV)〕M = ?=2X10T,

으= 1iy-y^xyJr2fz, (6)

p -르z= 广 lz~Vx - z. 
0 T

The value of f is very small and so is 17'2 since the magnitude 

of k5 is less than unity.7 Therefore, eq. (6) can be reduced to 

the following system involving only two intermediates, that 

is,

告—W 勺一g_g(g)y + 2fz,

p ~—z=(尸 b+g (g)-z, 
d r

(7)

where

x=g 3) = {lr+〔(g — 1) '+8例〕/4q

From now on we shall omit the superscript prime in the 

Laplacian operator. Let x0, y0, and zft be the values of the 

homogeneous steady state. Expansion in terms of U]=y-y〃 

and u2 = z-z0 leads to

-흐心 =(T)2V2-l-g-yf>gf )Ui+2/u： - (gz +g°g")
9 r 、.

-(g" +mg"' )«i

p -흐— 皿 =g/u1 + (尸一 l&+g" 皿； +g" a； T ， 

d r
⑻

(끼 = 丄 Al„i
8 n! dyn8'y=y°'

At first let us consider the linear case of eq. (8).

(A) Linear case
Neglecting the nonlinear terms in eq. (8), the linear equa­

tion is

-----u= Mu
dr

g./p ，(宀 l)/j ⑼

The linear stability conditions for the homogeneous case are 

det M = 1+g+gog' - 2fgf > 0 . 

tr M=(l+g+g^g'+?厂')V 0 .
(10)

Figures 1 and 2 show the regions of stability and instability 

between y0 and f, and y0 and p, respectively. As shown in 

Figure 1, there are the stable and unstable regions in the 

case that yf) is between about 0.6 and 1.6, depending on f.
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When y0 is less than 1.0, p should be extremely small so that 

the system is stable. This case is physically unrealistic. In 

f교ct, Field and Noyes7 estimated that k5 兰 1, i.e., p s 0.126. 

Taking p m 0.126, the system is stable, if 1.4<y0<1.7. Let us 

assume that the system is somewhere in the stable region. 

Then, when the system becomes inhomogeneous, the in­

termediates are diffused. The diffusions will drive the 

system to a new state, whether it is stable or unstable. Since 

it is more interesting to study the transition from the stable 

state to the unstable one, we shall consider the effect of diffu­

sions on such transition.

To discuss the diffusion-driven instability linearly, let us 

take one dimensional diffusion for simplicity, that is,

u (x, T)=u (r) COS kx, (11)

Then, we have 

d ( \ M ( \ M 广3 * +l+g+gog), 2f

dr 1 g /p , ~(1+虹)/0

Figure 3. The relation between y0 and kc2.

If det Mn k is positive-, the system is still stable. When 心 k< 

0, the diffusions drive the system to an unstable state. The 

variables v2 and k2 at the critical point are

z 〔2缶雄一1一g — sg')]5
--------------------- (13)

貶（1+医） ’

虻=2fg，-「grog，-〔2fg，（2fg，- l-g-gog，）］"

The value of k： is only positive for 0.5Vf when 0.6<yo<1.7, 

as 아lown in Figure 3, while 〃 ? is positive in any value of y0. 

This means that the transition can occur only in that region.

In order to analyze the dynamic behavior of the system we 

have to obtain the eigenvalues of eq. (12). When one of the 

eigenvalues is positive, the fluctuations become divergent, as 

time goes to infinity. The system, however, approaches 

the stable state, if 나le eigenvalues are negative. Let us con­

sider the dynamic behavior of eq.(12) extremely close to the 

critical point. The eigenvalues of the matrix and their cor­

responding eigenvectors near the critical point are

入L
〔(l+k)+2pfg'〕m/ )
—p(l+k：) +이〃 F)，

,_ 2 农蛙（l+k$）2

福北尸+2pfg' 而-农）.

『=（叫,!顷=（-警「1）「,

(14)

1广 =(贮, Tl)T= (너芝,1)T, 
g

旷 =(秋 页= —(1 나言)'_____(____ 1)
(""(l+3+2W( 1 + M'D'

戸=(切：项;)=——迎fg'______ (1+紅 1)(1+，的 2+2p/g'( 2" ' D'

(12)
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where Wa and are the right and left eigenvectors cor­

responding to A respectively. It can be easily checked that 

the eigenvectors satisfy the orthonormal conditions.8 The 

eigenvalue 入、is negative in the region that 1.4 1.6,

where the theory8 holds. In that region, very close to the 

critical point, the solution is

u (x, r ) =A ^'icoskcx. (15)

The above result shows that fluctuations are time­

independent near the critical point, which does not describe 

the actual phenomena properly. Thus, in the next section we 

shall consider the nonlinear equation given in eq. (8).

(B) Nonlinear case
We shall use the two time scaling method already 

discussed8 to investigate nonlinear stability for the 

Oregonator. The scaled times and vectors are8

m=0, 1, (16)

S =专 e 知”，，,j =1, 2,

Where r 0 is the region of time where not only the linear ap­

proximation is valid but also a slight nonlinear effect is in­

cluded and r 1 is the region of time in which the nonlinear ef­

fect becomes important. The parameter e has been defined 

as

由 一 /I. (17)

Assuming that the fluctuations depend on r 0 and r 】through 

the amplitude of fluctuations A, that is,

U(X, To, T1)(f Tl) ^2coskcx, (18)
the following equations in the initial region of time, r0 are ob­

tained

~■— («n, «i2)T=M 7)c, *c (uh , un ) T, (19a)
O T r>

(MH, «22)T = M %, kc («2), %) (g' +?罹”，一矿 /P) T-
d t D

(19b)

Eq. (19a) is just the linear equation already discussed. Thus, 

A is approximately independent of r o near the critical point. 

Following the procedure given in ref. 8, we have the asymp­

totic solution in the initial region of time as follows

(«!, u2) t=A £ F2cosAcx—§4% 2(缨《)2(。’ +s 七眼以"丿，(20) 

where

(S；,据)'=£&' , -g"(l+g+g°g')
n

+g‘ 伝‘ )〕「，

舟=§〔(1+4就)大+饥矿)-2fg", 
ft

_g"(4"%： + l+g+g()g')+g'(g‘)〕'，

H = l+g+g°g，

R= (4"%*+i+g+g。/) (1+4牖)一2危'.

Using eq. (17), A 2 is defined as

2 2&^(l+#)2
If— (l+")'+2"g'' sign 7 = sign (?; - 7}c). (22)

Figure 4. The dependence of AJp on time rx .

Substituting eqs. (20) and (22) into eq. (8), taking terms up to 

the third order in E and using the orthonormalization condi­

tion given in eq.(2.13) of ref. 8, we have

g一4 = - ”1 +由3, 
ati

(23)

where

* （1+M）3
g"〔（i+贮），+4 衬事〕 {〔(l+M)(g'+g°g") — 2/g〃〕

X （姐舟）-号〔（1+峰）（8" +，。《'）-2侶'〕｝. （24）

d'is positive for f NQ.5 in the region of 1.4<y0<1.6. When V is 
larger than 矶,A = 0 is stable and 士(r/d、)％ are unstable. The 

amplitude becomes zero as c ，if the initial state is be­

tween «沖/2 and (r/^Y/2. Otherwise, A becomes divergent. 

In the case that 기 v가。there is only a state which is unstable, 

that is, A = 0. Thus, A diverges as j t 00. The dependence 

of the amplitude of fluctuations on r. is shown in Figure 4.

Conclusion and Discussion

We have applied the nonlinear theory8 to the reduced 

Oregonator, which is a model for the B-Z reaction. The result 

shows that the theory may be applied to an actual system, if 

there are available data. It should be mentioned that in the 

result the region of y0, 1.4 < y0 < 1.6, where the theory is 

valid, is approximate, since the data used have been roughly 

estimated.7 There are, however, some other points to be 

pointed out.
(1) Since there are some problems in the data for the 

Oregonator, that is, q is too small and k5 is too large, the pre­

sent result should be compared with other models.13

(2) We have reduced the original Oregonator to the 응e- 

cond order system. Thus, it is necessary to extend the theory 

to the third order system to study the diffusion-driven in­

stability more precisely.

(3) Finally, in eq. (23) there are cases that the amplitude of 
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fluctuations is divergent, since we have considered the 

nonlinear terms up to the third order in e. The higher order 

terms 안lould be included, if necessary.
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Various useful relations inv이ving Hammett's and Br加sted's coefficients are derived for cross interactions between identical 
groups: p lt = pL^ pL- pN=\f B “= B B l andgjv-们=L The use of these relations enable us to correctly in- 
terprete the transition state structure. Another advantage of the use of these relations is to use P/Pe for the determination of 
corresponding p values instead of plotting log k vs pK归,once pe values for standardizing equilibria are obtained.

Cross interaction between two substituents has become a 

useful concept in the study of reaction mechanisms.1 Multi­

ple linear regression analysis2 inv이ving experimental rate 

constants kxz together with 々 and az values provides us 

with the cross interaction constant Pxz for the interaction 

between two substituents X and Z in accordance with eq.(I)3.

1。용 W xjk 曲) = p E x* P z。z* P x" E z (1)

Replacing one of 나le substituents by H, e.g. Z = H, in eq. (1) 

reverts to the simple Hammett equation(2); the Px and Pz 

values in eq. (1)should therefore be more rigorously- 

represented as P 溷 and P HZ.

log(AxAH) =pxax (2)
Let us consider a reversible nucleophilic substitution (S^) 

reaction, eq. (3),

XN+RLZ 日二三 XNR+LZ (3)
k -

where XN and LZ represent a nucleophile with a substituent 

X and a leaving group with a substituent Z, respectively.

The % and % 订】eq. (1) now becomes the reaction con­

stants for substituent variations in the nucleophile and leav­

ing group. For an identity SN reaction, i.e., XN = LZ,

log (虹/D = '-p " + 日 L) +们2； (4) 

where PiHand pL - pHi; Obviously pL in general.

Hereafter, we adopt a convention that P + (for k+) =(oLand 

P "(for k") =pN. It has been 아lown that the neglect of second 

order term in the Marcus equation leads to ⑷

p++p~=pit i.e., p，노尸=(5) 

Thus, log(L/釘月)=/» 0 + a：) (6)

To be consistent with the approximations adopted in the 

derivation of eq. (l)3t we neglect the term in 玲，which 

simplifies eq. (6) to

k>g(虹 /城)(7) 

Since KK[ =ktll/klH=k+/k~, (KHl =K;=) ⑻

pe = p+-p-, i. e., pe = pL-pN (9)

where Pe is 바le Hammett *s coefficient for the equilib-ium 

constant K历七 and 夕 + a -d。一 = "/ = »辺.Eqs.⑸

and (9) constitute a set of iundamentE.1 relations for the iden­

tity exchange reactions.

Definition of BrAnsted zs coefficii nt B leads us to more 

useful correlations for the identity :- fictions.6

\og k _d log k+ d pK p + pL
们_ dpK -侦丁*、=3 血)

Likewise,


