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sion between the relatively large electronic charge and bond
pairs at the g-carbon. The MNDO results are consistent with
the TS where C,-O bond polarization is the rate-determining
step, which follows the pre-equilibrium involving the acidic
hydrogen shift towards the carbonyl oxygen.
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A nonlinear theory presented previously is applied to the Qregonator, which is a model for the Belousov-Zhabotinskii reac-
tion, to study instability near the critical point driven by diffusions. The result shows that the theory may be applied to an ac-

tual system,

Introduction

Theoretical and experimental studies of instability in
chemically reacting systems date back at least to the early
part of this century.’? Lotka! proposed in 1920 a simple
model of autocatalytic chemical reactions which shows sus-
tained oscillations in the concentration of the autocatalytic
species when open to a flow of matter through the system.
Bray? discavered this kind of sustained oscillation in an in-
organic redox reaction. In 1952 Turing® showed that stable
spatial patterns can be obtained when chemical reactions are
coupled to the process of diffusion. Thus, he laid the founda-
tion for a biochemicat theory of morphogenesis. Much atten-
tion has been given to that subject in the past 20 years since
the dramatic phenomena in the Belousov-Zhabotinskii (B-Z}
reaction sparked the interest of experimentalists and

theoreticians in chemistry and other fields.*?

Recently Lee and his coworkers?® have proposed a
nonlinear theory for the fluctuations of intermediates in the
Brusselator near the critical point caused by diffusion. The
method used®!2 is the twoa time scaling method which is one
of the most widely used methods. In the conventional two
time scaling method the whole range of time is divided into
three regions of time. The initial region of time is the range
of time where the linear approximation is valid. The second
region is the region in which the nonlinear effect becomes
important and the system approaches a steady state (or
eguilibrium state). The two time scaling method used? is dif-
ferent from the conventional method in the sense that a slight
nonlinear effect is inctuded in the initial time region where
the linear approximation is valid. Their nonlinear theory
shows that fluctuations close to the critical point approach
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the value of a stable steady state or deviate infinitely from an
unstable steady state, as time goes to infinity, while the
linear theory gives approximately time-independent fluctua-
tions.

The purpose of the present paper is to investigate that the
nonlinear theory?® is applicable to the actual reacting system
with the aid of the Oregonator.87 We first discuss the linear
case for the Oregonator far from the steady state. Then, the
nonlinear case is discussed with the aid of the two time scal-
ing method.

Theory

The overall B-Z reaction is*?

2BrO;+3CH, (COOH},+2H* —
2BrCH (COOH),+3C0,+4H,0. (1)

Field, Kords and Noyes proposed a complex system of 10
chemical reactions with 7 intermediates as a model for the
B-Z reaction. From this system Field and Noyes” extracted a
simpler model that appears to retain the most important
features of the Field-Kords-Noyes (FKN) mechanism. Their
simplification, called the Oregonator, is given by

k
A+Y = X+P,

X+Y 2 2P,
A+X =2 2X+2Z, {2)

k,
2X = P+A4,
k
zZ =31y,
where A is the reactant, P is the product and X,Y,and Z are
the concentrations of the intermediates HBrO,, Br™ and
Ce(IV), respectively, f is a stoichiometric factor. Taking
[A] = 0.06M, the rate constants are given as’

k=2 IM'S, k,=2X10°M 'S, ky=10M 'St
k;"—'4><10’M"S", k,:ﬁ.at[BrCH(COOH),]S"‘ (3)

Since the concentration of the reactant is held constant, the
stoichiometric factor f and the rate constant kg are con-
trollable variables. The behavior of the Oregonator depends
criticaily on the values of f and k;.?
Including the diffusions of the intermediates, the rate
equations are
el

at

X=D VX+kAY -k XY +k,AX -2k X7,

2 y-D, 7Yk AY -k XY +RZ @)
—%Z=D, PiZ+2k,AY -k, Z,

where D, D,, and D, are the diffusion coefficients of the in-
termediates X, Y, and Z, respectively. In order to simplify
above differential equations, let us introduce the following
transformation for the variables

=£. -~ 19 -i’_ ~ ‘ -
x k‘AX=L5><10 {HBrO,), ¥ k,AY'3'3X10 (Br-)
— kzks - 7 :k_1~ -4
Z zklksA:Z—l.leo [CE{N”.E k, —2><].0 R
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r=(k,A)t =013t

k.A ____,0. 126 _2klkl ~ -6 ‘5
P = h Y hk, =8.4%x107°, Q)
D D,k D
s 3 Yz 1_Z¥78 ~ k4
v k, V. n Dzk| =S-QD=kB-
a3=DIk

s _,&
N m’=l.7><10 Dzk,.

D,
With the aid of the scaled variables, the rate equations are

éaa—xFr:”F’"x+y*xy+x—2qx’.
T

iﬂ-n’l” y—y-xy+2fz, {6)
ar

P —aa—rz- P lz4z—2,

The value of &is very small and so is 7’2 since the magnitude
of k; is less than unity.” Therefore, eq. (6) can be reduced to
the following system involving only two intermediates, that
is,

3 , .
a7 y=n'9 y-y—-g@y+2fz,
T

p—-a—z- P ztgly)—=. 7
or
where
s=gly)={1-y+[g-1)"+8¢y])' " /4q

From now on we shall omit the superscript prime in the
Laplacian operator. Let x,, y,, and z, be the values of the
homogeneous steady state. Expansion in terms of u, =y-y,
and u, = z-z, leads to

a ’ f o7 ”
ST (H'V"l—s-y.g Y+ 2fu; - 8 18 )"1’

ar
- (g +yog” Jui e,
’a ’ s 7 e d
ey il w,+ (P*—1)u,+g” i +g” ul+-, 8)
m — ]' dﬂ
g _’I @Sly-yo-

At first let us consider the linear case of eq. (8).

{A) Linear case

Neglecting the nonlinear terms in eq. (8), the linear equa-
tion is

3
aru—Mu
n’V’-l—s—y-g"b‘
u=lu,,u,) M=
Uy, u; [ g,/p , (P'— 1)/p] (9)

The linear stability conditions for the homogeneous case are

det M=1+g+yog” -2fg' > 0,

(10)

tr M=~ (1+g+y.g" +p ") <0.
Figures 1 and 2 show the regions of stability and instability
between v, and f, and y, and p, respectively. As shown in
Figure 1, there are the stable and unstable regions in the

case that y, is between about 0.6 and 1.6, depending on f.
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Figure 1. The diagram of linear stability between y,and f.
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Figure 2. The linear stability diagram between ¥, and p.

When y, is less than 1.0, p should be extremely small so that
the system is stable. This case is physically unrealistic. In
fact, Field and Noyes’ estimated that ks« 1, i.e., p % 0.126.
Taking p = 0.126, the system is stable, if 1.4<y,<1.7. Letus
assume that the system is somewhere in the stable region.
Then, when the system becomes inhomogeneous, the in-
termediates are diffused. The diffusions will drive the
system to a new state, whether it is stable or unstable. Since
it is more interesting to study the transition from the stable
state to the unstable one, we shall consider the effect of diffu-
sions on such transition.

To discuss the diffusion-driven instability linearly, let us
take one dimensional diffusion for simplicity, that is,

ulx, v)=u(r) cos kx 11)
Then, we have

4 (7K +1+g+y.8" ), 2f
) =M (z);Maq =
= uir] moat(t) ;Mo « [ & /p , '(l—Ht’)/p]

dr
(12)
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Figure 3. The relation between y, and k2.

If det M, , is positive, the system is still stable. When M, <
O, the diffusions drive the system to an unstable state. The
variables n° and k2 at the critical point are

(2fg’ (2fg' —1-g-y.8")])'"

(A (s : 1)
gt A8 —t-g-yis’ — [2fg" fg' - 1-g-ye"))\"*
¢ 1+g+yog’ )

The value of k2 is only positive for 0.5<f when 0.6<y,<1.7,
as shown in Figure 3, while 7 2 is positive in any value of y,.
This means that the transition can occur only in that region.
In order to analyze the dynamic behavior of the system we
have to obtain the eigenvalues of eq. {12). When one of the
eigenvalues is positive, the fluctuations become divergent, as
time goes to infinity. The system, however, approaches
the stable state, if the eigenvalues are negative. Let us con-
sider the dynamic behavior of eq.(12) extremely close to the
critical point. The eigenvalues of the matrix and their cor-
responding eigenvectors near the critical point are

((1+KkE) *+2pfg’)

/\13— p(]_+k\._’.) +0(?}’"’ﬁ'c)|
2ncki(1+k2)?
l==‘(1—:_;m-(0‘ac)+0(v-ﬂd’.
1_ 1 TR 2pf r
1+k;

Fi=(¥, ¥ ™= (—<. 17,
g
(1+42)? __&
(L+&2)*+ 2pfs’ 1+4&%°

2pfg’ 1+&¢ "
(1+k&)*+2pfe” 2pf "

o
L]

R

2 1),

»

<)
=

AN

LFD=
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where ¥ and e are the right and left eigenvecturs cor-
tesponding to A ., respectively. It can be easily checked that
the eigenvectors satisfy the orthonormal conditions.® The
eigenvalue A, is negative in the region that 1.4 <y, i< 1.6,
where the theory® holds. In that region, very close to the
critical point, the solution is

ulr, t)= AW cosk,x.

{15)

The above result shows that fluctuations are time-
independent near the critical point, which does not describe
the actual phenomena properly. Thus, in the next section we
shall consider the nonlinear equation given in eq. {8).

{B) Nonlinear case

We shall use the two time scaling method already
discussed® to investigate nonlinear stability for the
Oregonator. The scaled times and vectors are®

Ta=¢ ", m=0, 1,

(16)

“i=§ E(ulini’j=lv 2,

Where 7o is the region of time where not only the linear ap-
proximation is valid but also a slight nonlinear effect is in-
cluded and 7, is the region of time in which the nonlinear ef-
fect becomes important. The parameter ¢ has been defined
as

(17}
Assuming that the fluctuations depend on r« and ¢ through
the amplitude of fluctuations A, that is,

Ez=|??_"?ci.

u(x, 7o, t,) =A (1o, t,) ¥’cosk.z, (18}

the following equations in the initial region of time, r, are ob-
tained

3

YN {19a)

(0, #52) T=M N ke (w1, 2y ) r‘

a s ’ r” ”
'éT[“:l,un)T=Mnc. Xe ‘-“n.“zz)r_“n}(g +y.8”, -8 /‘P)r‘
(19h)

Eq. (19a) is just the linear equation already discussed. Thus,
A is approximately independent of 7o near the critical point.
Following the procedure given in ref. 8, we have the asymp-
totic solution in the initial region of time as follows

(4, up) T=A ¢ FPcoskor— —;ﬂ«ﬂe TF? (g '+ plcosk.z), (20)

where
g'=1(¢1 92) ’-% & +yig” ~2f&", —&" (1+8+yo8")
+g & +yg” )",
#r=a ((1+1KD) (&' +908" )= 2fe"
—8" WUnctkit1+etyog’) +8" @ Fys” )],
H=1+g+ys -2fe
R=4niki+1+eg+y.g’) (1+4kc) —2fg.
Using eq. (17), A, is defined as

_2ncki(1+k)*

A= —yeltiy=SFeoe TRel
BT TYE Y TR opfe

sign ¥y =sign{p —nc). (22)
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Figure 4. The dependence of A{z) on time 7 .

Substituting egs. {20) and (22) into eq. {8), taking terms up to
the third order in € and using the orthonormalization condi-
tion given in €q.(2.13) of ref. 8, we have

d

A= - yA+SA*, (23)
dr,
where

5= {1+k2)°
g t((1+4)*+4pfg")

{((+4E) & +y.8") - 28")

(g1 L el —FULHRD € +usn -2 @)

&is positive for £ Z0.5 in the region of 1.4<y,<1.6. When nis
larger than 5, A = Qs stable and + (r/§)¥/2are unstable. The
amplitude becomes zerc as r, = =, if the initial state is be-
tween -(r/ 5}z and (r/5)V2. Otherwise, A becomes divergent.
In the case that 7<7, there is only a state which is unstable,
that is, A = Q. Thus, A diverges as r, = <. The dependence
of the amplitude of fluctuations on ¢, is shown in Figure 4.

Conclusion and Discussion

We have applied the nonlinear theory® to the reduced
Oregonator, which is a model for the B-Z reaction. The result
shows that the theory may be applied to an actual system, if
there are available data. It should be mentijoned that in the
result the region of y,, 1.4 <y, <1.6, where the theory is
valid, is approximate, since the data used have been roughly
estimated.” There are, however, some other points to be
pointed out,

(1) Since there are some problems in the data for the
Oregonator, that is, q is too small and k is too targe, the pre-
sent result should be compared with other models.!?

(2) We have reduced the original Oregonator to the se-
cond order system. Thus, it is necessary to extend the theory
to the third order system to study the diffusion-driven in-
stability more precisely.

(3) Finally, in eq. (23) there are cases that the amplitude of
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fluctuations is divergent, since we have considered the
nonlinear terms up to the third order in ¢. The higher order
terms should be included, if necessary.
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Various useful relations involving Hammett's and Brgnsted’s coefficients are derived for cross interactions between identical
groups: p, =p*+pt pl—p¥=1 B, =g\+A. and B.- 8. =1. The use of these reiations enable us to correctly in-
terprete the transition state structure. Another advantage of the use of these relations is to use g/ . for the determination of
corresponding 8 values instead of plotting log k vs pK,, once p, values for standardizing equilibria are obtained.

Cross interaction between two substituents has become a
useful concept in the study of reaction mechanisms.! Multi-
ple linear regression analysis? involving experimental rate
constants ky, together with oy and ¢, values provides us
with the cross interaction constant #,, for the interaction
between two substituents X and Z in accordance with eq.(1)3,

Iog(kxz/’kun)=Px0x+ﬂzﬂz+ﬂxzdxaz (n

Replacing one of the substituents by H, e.g. Z=H, in eq. (1)
reverts to the simple Hammett equation(2); the 2, and 2 >
values in eq. (I} should therefore be more rigorously
represented as @ ., and # .

loglks/hy) =prox (2)

Let us consider a reversible nucleophilic substitution Sy
reaction, eq. (3),

+

k.
XN+RLZ < XNR+LZ (3)

where XN and LZ represent a nucleophile with a substituent
X and a leaving group with a substituent Z, respectively.

The #¢ and # in eq. (1) now becomes the reaction con-
stants for substituent varietions in the nucleophile and leav-
ing group. For an identity 3, reaction, i.e., XN =LZ,

IOg(&u/k"N)= ':PNJ’-!‘GL)JJ_‘_puaf {4}

where #V= 2, and 5% = p;;; Obviously s~ » pL in general.

Hereafter, we adopt a convention that *(for k*) = pland
& ~(for k) =0 ¥ It has been shown that the neglect of second
order term in the Marcus equation leads to @

st =p, i.e., pt+p¥=p, {5)
Thl.ls, log (kutfk!w.}=.ﬂu {_01"}‘0'3} {6)

To be consistent with the approximations adopted in the
derivation of eq. (1)°, we neglect the term in 92, which
simplifies eq. (6) to

log(k“/knm}"ﬂuas {7
Since Knggkn(/k;n=k+)’k-‘ (K,“=K,_;” (8)
pe=p*=—p e, pe=pt-p" )

where #, is the Hammett ‘s coefficient for the equilib-ium
constant K5, and p* = ot apy a¢ - =e¥=p 4. Egs. (5)
and (9) constitute a set of tundamentz| relations for the iden-
tity exchange reactions.

finition of Br¢nsted ‘s coefficiint # leads us to niore
useful correlations for the identity ~—actions.?
dlogk dlghkt de-- bt et

= --2 (10
d pK d o d o e pe 10a)

Be=

Likewise,



