The Effects of Substituent, Pressure and Temperature on the Dissociation Constants of Organic Acids. (5) Dissociation Constants of Leucine in Aqueous Solution

유기산의 해리평행에 미치는 치환기효과와 그의 온도 및 압력의 영향. (5) 수용액에서 루신의 해리상수

  • Jung-Ui Hwang (Research Institute of Basic Science, Kyungbook National University) ;
  • Wo-Bung Lee (Research Institute of Basic Science, Kyungbook National University) ;
  • Jeum-Jae Cho (Research Institute of Basic Science, Kyungbook National University)
  • 황정의 (경북대학교 기초과학연구소) ;
  • 이우붕 (경북대학교 기초과학연구소) ;
  • 조점제 (경북대학교 기초과학연구소)
  • Published : 1987.10.20

Abstract

The two dissociation constants of leucine were measured in the temperature range from 15 to 40$^{\circ}$C and pressure up to 2,500 bar by conductometric method. Both constants were increased as the temperature increased but pressure effect was not same as temperature effect. The first constants were increased as pressure increase but the second constants were decreased as pressure increase in the law temperature range but increased in some higher temperature range. These phenomena were discussed from the thermodynamic properties of the dissociation reactions.

루신의 해리상수를 전도도법을 이용하여 온도(15 to 40$^{\circ}$C)와 압력(1~2,500bar)을 변화시키면서 측정했다. 루신의 두가지 해리상수는 온도가 높아지면 모두 증가하였다. 그러나 압력이 높아지면 첫째 해리상수는 증가하였으나 둘째 해리상수는 낮은 온도에서는 감소하고 높은 온도에서는 증가했다. 이들 해리상수를 이용하여 해리반응의 열역학적 성질들을 계산하고 이들 성질로부터 해리반응의 특성을 알아보았다.

Keywords

References

  1. Z. Physik. Chem. (Leibzig) v.36 K. E. Winkelblech
  2. Protein, Amino Acids, Pepttides E. J. Cohn;J. T. Edsall
  3. Z. Physik. Chem. (Leibzig) v.4 J. Walker
  4. Z. Physik. Chem. (Leibzig) v.54 H. Luden
  5. Z. Physik. Chem. (Leibzig) v.49;51;57 H. Walker
  6. J. Am. Chem. Soc. v.38 E. Q. Adames
  7. J. Biol. Chem. v.101 L. F. Nim;P. K. Smith
  8. J. Biol. Chem. v.128 J. P. Greenstein;F. W. Klemperer
  9. J. Am. Chem. Soc. v.82 E. J. King
  10. J. Am. Chem. Soc. v.52 A. L. Von Muralt
  11. J. Am. Chem. Soc. v.56 B. B. Owen
  12. The Physical Chemistry of Electrolytic Solution H. S. Harned;B. B. Owen
  13. J. Am. Chem. Soc. v.52 H. S. Harnded;B. B. Owen
  14. J. Am. Chem. Soc. v.52 H. S. Harned;B. B. Owen
  15. J. Am. Chem. Soc. v.54 H. S. Harned;Ehlers
  16. J. Biol. Chem. v.122 P. K. Smith;A. C. Taylor;E. R. B. Smith
  17. J. Am. Chem. Soc. v.76;79 E. J. King
  18. J. Am. Chem. Soc. v.73 M. May;W. Felsing
  19. J. Am. Chem. Soc. v.97 W. S. Matthews;J. E. Bartmess;F. G. Bordwell;F. J. Cornforth;G. E. Durcker;Z. Margolin;R. J. McCallum;G. J. McCollum;N. R. Vanier
  20. J. Org. Chem. v.51 D. L. Hughes;J. J. Bergan;E. J. J. Grabowski
  21. Z. Physik. Chem. (Leibzig) v.121 L. Ebert
  22. J. Am. Chem. Soc. v.55 J. T. Edsell;M. H. Blanchard
  23. J. Am. Chem. Soc. v.78 R. W. Green;H. K. Tong
  24. 大韓化學會誌 v.30 黃正義;李宗彦;정재원;張景喜
  25. Liquid Phase High Pressure Chemistry N. S. Issacs
  26. J. Am. Chem. Soc. v.63 R. E. Gibson;O. H. Leffeler
  27. J. Am. Chem. Soc. v.73 E. J. King
  28. Austr. J. Chem. v.7 S. D. Hamann;S. C. Lim
  29. Trans. Faraday. Soc. v.49 J. Buchanan;S. D. Hamann