ON WC-CONTINUOUS FUNCTIONS (*)

F. CAMMAROTO and T. NOIRI (**)

1. Introduction

In 1970, Gentry and Hoyle [5] defined a function $f: X \rightarrow Y$ to be C-continuous if for each $x \in X$ and each open set V containing $f(x)$ and having the compact complement, there exists an open set U containing x such that $f(U) \subseteq V$. These functions have been investigated by Long and Hendrix [6] and Long and Herrington [8]. In 1980, Long and Hamlett [7] called a function H-continuous by replacing "compact" in the definition of C-continuous functions with "H-closed" (quasi H-closed relative to Y [10]). The investigation of H-continuous functions has been continued by the second author [9] of the present paper.

Recently, Lo Faro and the first author [1,2] have introduced and investigated a new weak form of compactness in topological spaces, called weakly compact spaces. In this paper, we introduce and characterize sets called weakly compact relative to a topological space. Then we define a new class of functions called WC-continuous functions analogous to H-continuous functions and C-continuous functions. It will be shown that WC-continuity implies H-continuity and they are equivalent if the range of the function is almost-regular [11].

2. Definitions

Throughout this paper X and Y represent topological spaces on which no separation axioms are assumed unless explicitly stated. Let S be a subset of a space X. The closure and the interior of S in X are deno-

Received April 24, 1986.

(*) This research was supported by a grant from the C.N.R. (G.N.S.A.G.A.) and M.P.I. through "Fondi 40%".

(**) This result was presented to Meeting G.N.S.A.G.A. (C.N.R.) to University Torino held at October 1984.
A subset \(S \) is said to be regular open (resp. regular closed) if \(\text{Int}(\text{Cl}(S)) = S \) (resp. \(\text{Cl}(\text{Int}(S)) = S \)). For definitions and notations used in this paper, readers can find them in [2] except for the following.

Definition 2.1. An open cover \(\{V_\alpha | \alpha \in \mathcal{P}\} \) of a space \(X \) is said to be regular [2] if for each \(\alpha \in \mathcal{P} \) there exists a nonempty regular closed set \(F_\alpha \) in \(X \) such that \(F_\alpha \subseteq V_\alpha \) and \(X = \bigcup \{\text{Int}(F_\alpha) | \alpha \in \mathcal{P}\} \).

Definition 2.2. A space \(X \) is said to be weakly compact [2] (resp. quasi \(H \)-closed [10]) if every regular (resp. open) cover of \(X \) has a finite subfamily whose closure is a cover of \(X \).

In [12], Singal and Singal called quasi \(H \)-closed spaces almost compact. A quasi \(H \)-closed Hausdorff space is usually called \(H \)-closed. Urysohn-closed spaces are characterized by weakly compact Urysohn spaces [3]. It has been shown in [2] that almost compactness is strictly stronger than weak compactness.

Definition 2.3. A space \(X \) is said to be almost-regular [11] if for each regular closed set \(F \) of \(X \) and each point \(x \in X - F \), there exist disjoint open sets \(U \) and \(V \) such that \(F \subseteq U \) and \(x \in V \).

Definition 2.4. A subset \(K \) of a space \(X \) is said to be weakly compact relative to \(X \) if for each cover \(\{V_\alpha | \alpha \in \mathcal{P}\} \) of \(K \) by open sets of \(X \) satisfying the following property (P), there exists a finite subset \(\mathcal{P}_0 \) of \(\mathcal{P} \) such that \(K \subseteq \bigcup \{\text{Cl}_X(V_\alpha) | \alpha \in \mathcal{P}_0\} \).

(P) For each \(\alpha \in \mathcal{P} \), \(V_\alpha \) contains a nonempty regular closed set \(F_\alpha \) of \(X \) and \(K \subseteq \bigcup \{\text{Int}_X(F_\alpha) | \alpha \in \mathcal{P}\} \).

Definition 2.5. Let \(\mathcal{F} \) be a filter on a space \(X \). A point \(x \in X \) is called a \(\gamma \)-adherence point of \(\mathcal{F} \) [2] if \(\mathcal{F} \cap \mathcal{U}(\overline{\{x\}}) \neq \emptyset \).

Definition 2.6. Let \(A \) be a subset of a space \(X \). A point \(x \in X \) is called a \(\gamma \)-adherence point of \(A \) if \(A \cap V \neq \emptyset \) for every \(V \in \mathcal{U}(\overline{\{x\}}) \). The set of all \(\gamma \)-adherence points of \(A \) is called the \(\gamma \)-closure of \(A \). If \(A \) contains the \(\gamma \)-closure of \(A \), then it is called \(\gamma \)-closed.

3. Sets weakly compact relative to a space

Definition 3.1. A filter \(\mathcal{F} \) on a space \(X \) is said to be quasi-regular [2] if there exists an open filter \(\mathcal{Q} \) on \(X \) such that \(\mathcal{F} = \mathcal{U}(\mathcal{Q}) \).
REMARK 3.2. It is obvious that for any subset A of a space X $\text{tr}_A F \neq \emptyset$ if $\text{tr}_A \emptyset \neq \emptyset$, where $\text{tr}_A F$ denotes the trace of F on A. However, the converse is not true in general as the following example shows.

EXAMPLE 3.3. Let $X = \{x, y, z, t\}$ and $\mathcal{U} = \{\emptyset, X, \{x\}, \{z\}, \{x, z\}, \{x, z, t\}\}$. Let $A = \{z, t\}$. Then the filter $F = \mathcal{U}(\emptyset) = \{\{z, x, y\}, \emptyset\}$ is quasi-regular [2, Controesempio 4]. Moreover, $\text{tr}_A F = \{\emptyset, A\} \neq \emptyset$ but $\text{tr}_A \emptyset = \emptyset$ because $\{x\} \cap \{z, t\} = \emptyset$.

THEOREM 3.4. For a subset A of a space X, the following are equivalent:

1. A is weakly compact relative to X.
2. Every open filter \emptyset with $\text{tr}_A \emptyset \neq \emptyset$ has a γ-adherence point in A.
3. Every filter \emptyset such that \emptyset is an open filter and $\text{tr}_A \emptyset \neq \emptyset$ has an γ-adherence point in A.
4. Every quasi-regular filter $F = \mathcal{U}(\emptyset)$ such that $\text{tr}_A \emptyset \neq \emptyset$ has an adherence (δ-adherence or γ-adherence) point in A.
5. Every filter \emptyset such that \emptyset is a quasi-regular filter \emptyset with $\text{tr}_A \emptyset \neq \emptyset$ has an adherence (δ-adherence point in A.
6. Every filter \emptyset such that \emptyset is a quasi-regular filter \emptyset with $\text{tr}_A \emptyset \neq \emptyset$ has an adherence (δ-adherence or γ-adherence) point in A.
7. Every open ultra filter \emptyset with $\text{tr}_A \emptyset \neq \emptyset$ γ-converges.
8. Let $\{C_\alpha | \alpha \in \mathcal{\mathcal{V}}\}$ be a family of closed sets of X such that for each $\alpha \in \mathcal{\mathcal{V}}$ there exists an open set A_α of X satisfying $C_\alpha \subset A_\alpha$ and $\cap \{\text{Cl}(A_\alpha) | \alpha \in \mathcal{\mathcal{V}}\} \subset X - A$. Then there exists a finite subset V_0 of $\mathcal{\mathcal{V}}$ such that $\cap \{\text{Int}(C_\alpha) | \alpha \in V_0\} \subset X - A$.

Proof. (1) \Rightarrow (2): Let \emptyset be an open filter on X with $\text{tr}_A \emptyset \neq \emptyset$. We suppose that $\emptyset \cap \mathcal{U}(\emptyset) = \emptyset$ for every $x \in A$. Then, there exist open sets $G_x \subset \emptyset$, $U_x \subset U_x$ and $A_x \subset U(\emptyset)$ such that $G_x \cap A_x = \emptyset$ and $U_x \subset \text{Cl}(U_x) \subset A_x$. By $G_x \cap A_x = \emptyset$, we obtain $\text{Cl}(G_x) \cap A_x = \emptyset$ and hence $\text{Cl}(G_x) \cap \text{Cl}(U_x) = \emptyset$. Let us put $B_x = X - \text{Cl}(G_x)$, then $\text{Cl}(U_x) \subset B_x$ and $B_x \subset U(\emptyset)$.

The family $\{B_x | x \in A\}$ is a cover of A by open sets of X and $A \subset \bigcup \{\text{Int}(\text{Cl}(U_x)) | x \in A\}$. Therefore, there exists a finite number of points x_1, x_2, \ldots, x_n in A such that $A \subset \bigcup \{\text{Cl}(B_{x_i}) | i = 1, 2, \ldots, n\}$. Therefore, we have

(*) $\cap \{X - \text{Cl}(B_{x_i}) | i = 1, 2, \ldots, n\} \subset X - A$.

For each $i = 1, 2, \ldots, n$, $G_{x_i} \subset \text{Int}(\text{Cl}(G_{x_i}))$, hence we have $X - \text{Cl}(B_{x_i}) = \text{Int}(X - B_{x_i}) = \text{Int}(\text{Cl}(G_{x_i})) \in \emptyset$.

Therefore, by (*) we obtain $X - A \in \mathcal{G}$. This is a contradiction.

(2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6) \Rightarrow (7) \Rightarrow (1): These implications are proved similarly to the proof of [2, Lemma 2.1].

(4) \Rightarrow (8): Let $\mathcal{F}(\mathcal{V})$ be the family of all finite subsets of \mathcal{V}. We suppose that

\[\cap \{ \text{Int}(C_a) \mid a \in \mathcal{A} \} \not\subset X - A \text{ for every } \mathcal{A} \in \mathcal{F}(\mathcal{V}). \]

Then, $\mathcal{F} = \cap_{a \in \mathcal{A}} \text{Int}(C_a)$ is an open filter base with $\text{tr}_a \mathcal{F} \neq 0$. Thus, $\mathcal{U}(\mathcal{F})$ is a quasi-regular filter on X such that $\text{tr}_a \mathcal{F} \neq 0$. By (4), there exists a point $x \in A$ such that $\mathcal{U}(\mathcal{F}) \cap \mathcal{U}_x \neq 0$. Put

\[\mathcal{L} = \{ \cap_{a \in \mathcal{A}} \mathcal{A}_a \mid \mathcal{A} \in \mathcal{F}(\mathcal{V}) \}, \]

then it is an open filter base such that $\mathcal{U}(\mathcal{F}) \subset \mathcal{L}$. Therefore, $\mathcal{L} \cap \mathcal{U}_x \neq 0$ and hence $x \in \text{Cl}(A_a)$ for every $a \in \mathcal{V}$. Thus, we obtain $x \in \cap \{ \text{Cl}(A_a) \mid a \in \mathcal{V} \}$. This is a contradiction because $\cap \{ \text{Cl}(A_a) \mid a \in \mathcal{V} \} \subset X - A$.

(8) \Rightarrow (1): Let $\{ A_a \mid a \in \mathcal{V} \}$ be an open cover of A with Property (P). For each $a \in \mathcal{V}$, there exists a nonempty regular closed set C_a such that $C_a \subset A_a$ and $A \subset \cup \{ \text{Int}(C_a) \mid a \in \mathcal{V} \}$. We consider the family $\{ X - A_a \mid a \in \mathcal{V} \}$ of closed sets. For each $a \in \mathcal{V}$, $X - C_a$ is open in X, $X - C_a \subset X - A_a$ and

\[\cap \{ \text{Cl}(X - A_a) \mid a \in \mathcal{V} \} = X - \cup \{ \text{Int}(C_a) \mid a \in \mathcal{V} \} \subset X - A. \]

By (8), there exists a finite subset \mathcal{V}_0 of \mathcal{V} such that

\[\cap \{ \text{Int}(X - A_a) \mid a \in \mathcal{V}_0 \} \subset X - A. \]

Therefore, we obtain $A \subset \cup \{ \text{Cl}(A_a) \mid a \in \mathcal{V}_0 \}$. This shows that A is weakly compact relative to X.

4. WC-continuous functions

DEFINITION 4.1. A function $f : X \rightarrow Y$ is said to be WC-continuous if for each $x \in X$ and each open neighborhood V of $f(x)$ having the complement weakly compact relative to Y, there exists an open neighborhood U of x such that $f(U) \subset V$.

THEOREM 4.2. For a function $f : X \rightarrow Y$ the following are equivalent:

(1) f is WC-continuous.

(2) If V is open in Y and $Y - V$ is weakly compact relative to Y, then $f^{-1}(V)$ is open in X.

(3) If F is closed in Y and weakly compact relative to Y, then $f^{-1}(F)$ is closed in X.

Proof. (1) \Rightarrow (2): Let V be an open set of Y such that $Y - V$ is weakly compact relative to Y. Let $x \in f^{-1}(V)$. Then $f(x) \in V$ and there exists an open neighborhood U of x such that $f(U) \subseteq V$. Therefore, we have $x \in U \subseteq f^{-1}(V)$. This shows that $f^{-1}(V)$ is open in X.

(2) \iff (3): This is obvious.

(3) \Rightarrow (1): Let $x \in X$ and V an open neighborhood of $f(x)$ such that $Y - V$ is weakly compact relative to Y. By (3), $f^{-1}(Y - V)$ is closed in X and hence $U = f^{-1}(V)$ is an open set containing x such that $f(U) \subseteq V$.

Lemma 4.3. If A_1 and A_2 are weakly compact relative to a space X, then $A_1 \cup A_2$ is weakly compact relative to X.

Proof. Let $\mathcal{O} = \{V_\alpha | \alpha \in \mathcal{A}\}$ be a cover of $A_1 \cup A_2$ by open sets of X satisfying Property (P). Then \mathcal{O} is a cover of A_1, A_2 satisfying (P) and hence for each $i = 1, 2$ there exists a finite subset V_i of \mathcal{A} such that $A_i \subseteq \cup \{\text{Cl}(V_\alpha) | \alpha \in V_i\}$. Therefore, we have

$$A_1 \cup A_2 \subseteq \cup \{\text{Cl}(V_\alpha) | \alpha \in V_1 \cup V_2\}.$$

This shows that $A_1 \cup A_2$ is weakly compact relative to X.

Let (X, τ) be a topological space. It follows from Lemma 4.3 that the family of open sets having the complement weakly compact relative to (X, τ) may be used as a base for a topology τ_{WC}. It has been shown that the family of open sets having the compact (resp. quasi H-closed) complement may be used as a base to generate a topology τ_C (resp. τ_H) on $X [5,7]$.

Remark 4.4. For a topological space (X, τ), we have $\tau_C \subseteq \tau_H \subseteq \tau_{WC} \subseteq \tau$.

Theorem 4.5. A function $f : X \to (Y, \sigma)$ is WC-continuous if and only if $f : (X, \sigma_{WC}) \to (Y, \sigma)$ is continuous.

Proof. This is obvious from the definition of σ_{WC}.

Remark 4.6. It is obvious that continuity implies WC-continuity and WC-continuity implies H-continuity. The following example shows that WC-continuity does not necessarily imply continuity.

Example 4.7. Let X be the set of real numbers with the usual topology and $f : X \to X$ a function defined as follows: $f(x) = \frac{1}{x}$ if $x \neq 0$; $f(0) = 1/2$. Then f is C-continuous [5, Example 2] and by Theorem
4.17 (below) \(f \) is \(WC \)-continuous. However, \(f \) is not continuous.

For a function \(f : X \to Y \), the set \(\{(x, f(x)) \mid x \in X\} \) is called the graph of \(f \) and denoted by \(G(f) \).

Theorem 4.8. If \(f : X \to Y \) is an open function and \(G(f) \) is \(\gamma \)-closed in the product space \(X \times Y \), then \(f \) is \(WC \)-continuous.

Proof. We suppose that \(f \) is not \(WC \)-continuous at some point \(x \in X \). Then there exists an open set \(V \) containing \(f(x) \) and having the complement weakly compact relative to \(Y \) such that \(f(U) \cap (Y - V) \neq \emptyset \) for every open set \(U \) containing \(x \). Since \(f \) is open,

\[\mathcal{Q} = \{f(U) \mid x \in U \text{ and } U \text{ is open in } X\} \]

is an open filter base with \(\text{tr}_Y \cdot \mathcal{Q} \neq \emptyset \). Since \(Y - V \) is weakly compact relative to \(Y \), by (2) of Theorem 3.4 \(\mathcal{Q} \) has a \(\gamma \)-adherence point \(y \in Y - V \). Therefore, \(y \neq f(x) \) and \((x, y)\) is a \(\gamma \)-adherence point of \(G(f) \). However, we have \((x, y) \notin G(f)\). This is a contradiction.

The following three theorems are immediate consequences of Theorem 4.5 and the proofs are omitted.

Theorem 4.9. If \(f : X \to Y \) is \(WC \)-continuous and \(A \) is a subset of \(X \), then the restriction \(f|A : A \to Y \) is \(WC \)-continuous.

Theorem 4.10. If \(f : X \to Y \) continuous and \(g : Y \to Z \) is \(WC \)-continuous then the composition \(g \circ f : X \to Z \) is \(WC \)-continuous.

Theorem 4.11. Let \(X \) be a space and let \(\{A_\alpha \mid \alpha \in \mathcal{V}\} \) be a cover of \(X \) such that

(a) each \(\alpha \in \mathcal{V} \), \(A_\alpha \) is open in \(X \)

(b) each \(\alpha \in \mathcal{V} \), \(A_\alpha \) is closed in \(X \) and the family \(\{A_\alpha \mid \alpha \in \mathcal{V}\} \) forms a neighborhood finite family.

If \(f : X \to Y \) is a function such that \(f|A_\alpha : A_\alpha \to Y \) is \(WC \)-continuous for each \(\alpha \in \mathcal{V} \), then \(f \) is \(WC \)-continuous.

Theorem 4.12. If \(X \) is Urysohn and \(A \) is weakly compact relative to \(X \), then \(A \) is closed.

Proof. Let \(x_0 \) be a point of \(X - A \). For each \(x \in A \), there exist open sets \(U_x \) and \(V_x \) containing \(x_0 \) and \(x \), respectively, such that \(\text{Cl}(U_x) \cap \text{Cl}(V_x) = \emptyset \). For each \(x \in A \), we have

\(x \in \text{Int}(\text{Cl}(V_x)) \subseteq \text{Cl}(V_x) \subseteq X - \text{Cl}(U_x) \) and \(A \subseteq \bigcup \{\text{Int}(\text{Cl}(V_x)) \mid x \in A\} \).
Therefore, the family \(\{ X - \text{Cl}(U_x) \mid x \in A \} \) is a cover of \(A \) by open sets of \(X \) satisfying Property (P). Since \(A \) is weakly compact relative to \(X \), there exist a finite number of points \(x_1, x_2, \ldots, x_n \) in \(A \) such that

\[
A \subseteq \bigcup_{i=1}^{n} \text{Cl}(X - \text{Cl}(U_{x_i})) = X - \bigcap_{i=1}^{n} \text{Int}(\text{Cl}(U_{x_i})).
\]

Thus, we obtain \(A \cap \bigcap \{ \text{Int}(\text{Cl}(U_{x_i})) \mid i = 1, 2, \ldots, n \} = \phi \), where \(\bigcap \{ \text{Int}(\text{Cl}(U_{x_i})) \mid i = 1, 2, \ldots, n \} \) is a regular open set containing \(x_0 \). This shows that \(A \) is closed.

Remark 4.13. The proof of Theorem 4.12 shows that \(A \) is a \(\delta \)-closed set due to Veličko [13].

Theorem 4.14. Let \(Y \) be a Urysohn space. Then, a function \(f : X \rightarrow Y \) is WC-continuous if and only if \(f^{-1}(K) \) is closed in \(X \) for each set \(K \) of \(Y \) weakly compact relative to \(Y \).

Proof. This is an immediate consequence of Theorems 4.2 and 4.12.

A subset \(S \) of a space \(X \) is said to be \(N \)-closed relative to \(X \) [4] if every cover of \(S \) by regular open sets of \(X \) has a finite subcover.

Theorem 4.15. Let \(X \) be an almost-regular space and \(A \) a subset of \(X \). If \(A \) is weakly compact relative to \(X \), then it is \(N \)-closed relative to \(X \).

Proof. Let \(\{ V_{a} \mid a \in \mathcal{V} \} \) be a cover of \(A \) by regular open sets of \(X \). For each \(x \in A \), there exists an \(\alpha(x) \in \mathcal{V} \) such that \(x \in V_{\alpha(x)} \). Since \(X \) is almost-regular, there exist regular open sets \(G_{\alpha(x)} \) and \(W_{\alpha(x)} \) such that

\[
x \in G_{\alpha(x)} \subseteq \text{Cl}(G_{\alpha(x)}) \subseteq W_{\alpha(x)} \subseteq \text{Cl}(W_{\alpha(x)}) \subseteq V_{\alpha(x)}.
\]

The family \(\{ W_{\alpha(x)} \mid x \in A \} \) is a cover of \(A \) by open sets of \(X \) satisfying Property (P). There exists a finite subset \(A_0 \) of \(A \) such that

\[
A \subseteq \bigcup \{ \text{Cl}(W_{\alpha(x)}) \mid x \in A_0 \}.
\]

Therefore, we have \(A \subseteq \bigcup \{ V_{\alpha(x)} \mid x \in A_0 \} \). This shows that \(A \) is \(N \)-closed relative to \(X \).

Theorem 4.16. Let \(Y \) be an almost-regular space. Then, a function \(f : X \rightarrow Y \) is WC-continuous if and only if \(f \) is \(H \)-continuous.

Proof. This is an immediate consequence of Theorem 4.15 and the fact that \(N \)-closed relative to \(Y \) implies quasi \(H \)-closed relative to \(Y \).

Theorem 4.17. Let \(Y \) be a regular space. Then, for a function
f : X → Y the following are equivalent:
(a) WC-continuous.
(b) H-continuous.
(c) C-continuous.

Proof. Since Y is regular, Y is almost-regular and hence by Theorem 4.15 every set weakly compact relative to Y is N-closed relative to Y. Moreover, every subset of a regular space is compact if it is N-closed relative to X [4, Theorem 4.1].

Theorem 4.18. Let Y be a compact space. Then, for a function f : X → Y the following are equivalent:
(a) continuous.
(b) WC-continuous.
(c) H-continuous.
(d) C-continuous.

Proof. By Remark 4.6, it is only necessary to show that (d) implies (a). Let F be a closed set of Y. Since Y is compact, F is compact and hence f⁻¹(F) is closed in X [5, Theorem 1]. Therefore, f is continuous.

References

University of Messina
Via C. Battisti 90
98100 Messina, Italy

and

Yatsushiro College of Technology
Yatsushiro-shi
Kumamoto-Ken
866 Japan