1. Introduction

Throughout this paper, A denotes a complex unital Banach algebra. An element h of A is Hermitian if its numerical range is real. Let H be the set of all Hermitian elements of A. This paper deals with the following question; If $a, b, ab \in H$, does it then follow that $ab = ba$?

Berkson [1] has proved various partial positive results, one is that, if a, b, ab, a^2 and b^2 are all Hermitian, then $ab = ba$. Murphy [4] extended Berkson’s result, that is, if a, b and ab are Hermitian and also either a^2 or b^2 is Hermitian, then $ab = ba$.

2. Main results

The following three lemmas contain the elementary properties of the Hermitian elements, which can be found in [2].

Lemma 2.1. (1) H is a real linear subspace of A. (2) $H \cap iH = \{0\}$.

Lemma 2.2. If $h, k \in H$, then $i(hk - kh) \in H$.

Lemma 2.3. (Sinclair’s Theorem) If $h \in H$, then $r(h) = ||h||$, where r denotes spectral radius.

We use the following lemma, which was proved by Kleinecke [3].

Lemma 2.4. Let B be a Banach algebra. Let $x, y \in B$. Let x commute with $xy - yx$. Then $xy - yx$ is quasinilpotent, that is, $r(xy - yx) = 0$.

Now we have the main theorem.

Theorem 2.5. Let $a, b, ab \in H$. Suppose also that either $i(hxb - xb^2) \in H$ and $a^2 + xb \in H$ for some x in A or $i(aya - ya^2) \in H$ and $b^2 + ya \in H$ for some y in A. Then $ab = ba$.

Received May 28, 1986.
Proof. Suppose first that $i(bxb-xb^2) \in H$ and $a^2+xb \in H$ for some x in A.

Apply Lemma 2.2 with $h=a$, $k=b$. So

$$i(ab-ba) \in H.$$ \hspace{1cm} (1)

Apply Lemma 2.2 with $h=-a$, $k=i(ab-ba)$. So

$$a(ab-ba)-(ab-ba)a \in H.$$ \hspace{1cm} (2)

Apply Lemma 2.2 with $h=a$, $k=ab$. So

$$i(a^2b-aba) \in H.$$ \hspace{1cm} (3)

Apply Lemma 2.2 with $h=b$, $k=a^2+xb$. So

$$i(ba^2-a^2b+xb-xb^2) \in H.$$ \hspace{1cm} (4)

Since $i(bxb-xb^2) \in H$,

$$i(ba^2-a^2b) \in H.$$ \hspace{1cm} (5)

Taking twice (3) plus (4), we conclude that

$$i(a^2b-2aba+ba^2) \in H.$$

i.e. $i(a(ab-ba)-(ab-ba)a) \in H$. \hspace{1cm} (5)

Apply Lemma 2.1(2) to (2) and (5) to deduce that

$$a(ab-ba)=(ab-ba)a.$$

Hence, by Lemma 2.4 $ab-ba$ is quasinilpotent. So, by (1), $i(ab-ba)$ is both Hermitian and quasinilpotent. Sinclair’s Theorem then applies to $i(ab-ba)$ to prove $ab=ba$.

The same conclusion follows when $i(aya-ya^2)$ and b^2+ya for some y in A are Hermitian by considering A with its multiplication reversed.

Corollary 2.6. Let $a, b, ab \in H$. Suppose also that either $a^2+rb^n \in H$ for some real number r and positive integer n or $b^2+sa^n \in H$ for some real number s and positive integer n. Then $ab=ba$.

Proof. Apply Theorem 2.5 to $x=rb^{n-1}$ and $y=sa^{n-1}$.

We obtain Murphy’s Theorem as a corollary.

Corollary 2.7. (Murphy’s Theorem) Let $a, b, ab \in H$. Suppose also that either $a^2 \in H$ or $b^2 \in H$. Then $ab=ba$.

Proof. Apply Corollary 2.6 to $r=0$ and $s=0$.

Corollary 2.8. Let $a, b, ab \in H$. Suppose also that either $a^2+xb \in H$, $bx=xb$ for some x in A or $b^2+ya \in H$, $ay=ya$ for some y in A. Then $ab=ba$.

Proof. It is trivial by Theorem 2.5.
References

Chungnam National University
Taejon 300–31, Korea