EXTENSIONS OF HIGHER ANTI-DERIVATIONS TO MODULES OF QUOTIENTS

SEOG HOON RIM

1. Introduction

Throughout the following, R will denote an associative ring with unit element 1 and R-Mod will denote the category of all unitary left R-modules. And let $w : R \rightarrow R$ be an involution (i.e. w is an endomorphism of R whose square is identity map.) Then anti-derivation with respect to w of R is a mapping $d : R \rightarrow R$ such that $d(a + b) = d(a) + d(b)$ and $d(ab) = d(a)b + w(a)d(b)$ for all elements $a, b \in R$ ([4]). If w is an identity map, then d is called an ordinary derivation.

If M is a unitary left R-module and if d is a fixed anti-derivation (with respect to w) on R then anti-d-derivation on M is a mapping $\tilde{d} : M \rightarrow M$ satisfying the condition that $\tilde{d}(m + n) = \tilde{d}(m) + \tilde{d}(n)$ and $\tilde{d}(am) = d(a)m + w(a)d(m)$ for all elements $m, n \in M$ and $a \in R$. If w is an identity map, then \tilde{d} is called a d-derivation on M ([3]).

Let S be a segment of \mathbb{N}, i.e. $S = \{0, 1, 2, \ldots, s\}$ for some $s \geq 0$. A family $d = (d_n)_{n \in S}$ of mappings $d_n : R \rightarrow R$ is called anti-d-derivation of order s of R (where, $s = \sup S \leq \infty$) if the following properties are satisfied

(i) $d_n(a + b) = d_n(a) + d_n(b)$
(ii) $d_n(ab) = d_n(a)b + \sum_{i+j=n-1} d_i(a)d_j(b) + w(a)d_n(b)$ for all $a, b \in R$

Let S be a segment of \mathbb{N}, i.e. $S = \{0, 1, 2, \ldots, s\}$ for some $s \geq 0$. A family $d = (d_n)_{n \in S}$ of mappings $d_n : R \rightarrow R$ is called anti-d-derivation of order s of R (where, $s = \sup S \leq \infty$) if the following properties are satisfied

(i) $d_n(a + b) = d_n(a) + d_n(b)$
(ii) $d_n(ab) = d_n(a)b + \sum_{i+j=n-1} d_i(a)d_j(b) + w(a)d_n(b)$ for all $a, b \in R$

If d is a fixed anti-d-derivation of order s on R, then anti-d-derivation of order s on M is a family $\tilde{d} = (\tilde{d_n})_{n \in S}$ of mappings satisfying that

(i) $\tilde{d_n}(m + m') = \tilde{d_n}(m) + \tilde{d_n}(m')$
(ii) $\tilde{d_n}(am) = \tilde{d_n}(a)m + \sum_{i+j=n-1} d_i(a)\tilde{d_j}(m)$
$+ w(a)\tilde{d_n}(m)$ for all $a \in R$ and $m, m' \in M$
(iii) $\tilde{d_0} =$ identity map on M ([3]).

Lemma 1. ([4, 5]) The set of ordinary derivations of R corresponds bijectively to the set of derivations of order 1 of R. And the set of der-

Received June 20, 1986.

— 25 —
ivations of order infinite corresponds bijectively to the inverse limit of the set of derivations of finite orders.

2. Preliminaries

Notations and terminology concerning (hereditary) torsion theories on R-Mod will follow [2]. In particular, if τ is a torsion theory on R-Mod then a left ideal H of R is said to be τ-dense in R if and only if the cyclic left R-module R/H is τ-torsion. If M is a left R-module then we denote by $T_\tau(M)$ the unique largest submodule of M which is τ-torsion. If $E(M)$ is the injective hull of a left R-module M then we define the submodule $E_\tau(M)$ of $E(M)$ by $E_\tau(M)/M = T_\tau(E(M)/M)$. The module of quotients of M with respect to τ, denoted by $Q_\tau(M)$, is then defined to be $E_\tau(M/T_\tau(M))$. Note that, in particular, if M is τ-torsionfree then $Q_\tau(M) = E_\tau(M)$, and this is a left R-module containing M as a largest submodule. In general, we have a canonical R-homomorphism from M to $Q_\tau(M)$ obtained by composing the canonical surjection from M to $M/T_\tau(M)$ with the inclusion map into $Q_\tau(M)$.

If R is the endomorphism ring of the left R-module $Q_\tau(RR)$ then $Q_\tau(M)$ is canonically a left R-module for every R-module and the canonical map $R \rightarrow R_\tau$ is a ring homomorphism, the ring R_τ is called as the ring of quotients or localization of R at τ. A torsion theory on R-Mod is said to be faithful if and only if R, considered as a left module over itself, is τ-torsionfree. In this case, R is canonically subring of R_τ.

Before entering our discussion, we assume that any anti-derivations are related with a fixed involution w.

Lemma 2. ([2]) Let H be a τ-dense ideal in R, and let $\alpha_{H,q}$ be R-module homomorphism defined on H into $Q_\tau(M)$, then R/H is τ-torsion and there exist unique R-module homomorphism $\beta_{R,q} : R \rightarrow Q_\tau(M)$ which makes the diagram

$$
\begin{array}{ccc}
0 & \rightarrow & H \\
& \alpha_{H,q} \downarrow & \rightarrow R \\
& \nearrow \beta_{R,q} & \uparrow Q_\tau(M)
\end{array}
$$

commutes.
Let H and K be τ–dense ideals of R then we have the following results.

1. $H \cap K$ is τ–dense ideal.
2. $(H : a) = \{r \in R \mid ra \in H\}$ is τ–dense ideal.
3. Homomorphic image of H is τ–dense ideal.

Let H and K be τ–dense ideals of R and let $\alpha_{H,q} : H \rightarrow Q_\tau(M)$ and $\alpha_{K,q} : K \rightarrow Q_\tau(M)$ be defined as in the Lemma 2. Then $\alpha_{H,q}$ and $\alpha_{K,q}$ define the same element in $Q_\tau(M)$.

3. Extension theorems

In this section we consider extensions of higher anti-d–derivation to modules of quotients, in the case module M is τ–torsionfree left R–module, where τ is a torsion theory on R–mod. We begin with a Lemma.

For each q in $Q_\tau(M)$, the map $\alpha_{H,q} : H \rightarrow Q_\tau(M)$ defined by $h \mapsto \bar{d}_n(w(h)q) - \sum_{i+j=n-1} d'_i(w(h))\bar{d}'_j(q) - d_n(w(h))q$ is an R–module homomorphism for every $h \in H$, where d'_i is a derivation of order i on R and \bar{d}'_j is derivation of order j on $Q_\tau(M)$ which restricts to M is \bar{d}_j. Moreover the map defined by $k \mapsto (k)\alpha_{K,q} = (kw(a))\alpha_{K,q}$ is an R–module homomorphism.

Proof. The proof is routine use the definition of higher anti-d–derivation and higher derivation.

Let d be an anti-d–derivation of order s on R and let τ be a torsion theory on R–Mod and M be τ–torsionfree left R–module on which we have defined an anti-d–derivation \bar{d} of order s. Then there exists an anti-d–derivation of order s, \bar{d} defined on $Q_\tau(M)$, the restriction of which to M is \bar{d}.

Proof. In the case of finite order, we use the mathematical induction on the order s. For $s=0$, the statement is trivial. For $s=1$, if $q \in Q_\tau(M)$, then there exists a τ–dense left ideal H of R satisfying $Hq \subseteq M$. Define a function $\alpha_{H,q} : H \rightarrow Q_\tau(M)$ by setting $h \mapsto \bar{d}(w(h)q) - d(w(h))q$, by the Lemma 2 we see that $\alpha_{H,q}$ extends uniquely to R–homomorphism from R to $Q_\tau(M)$ and so there exists unique element \bar{q} of $Q_\tau(M)$ satisfying the condition that $\bar{d}(q) = \bar{q}$. This function is well–defined and becomes anti-d–derivation of order 1, moreover restricts to M is \bar{d}.
Assume that for the case of \(s = n - 1 \), the statement is true. If \(q \) is an element of \(Q_\tau(M) \) then there exists \(\tau \)-dense left ideal \(H \) of \(R \) satisfying \(Hq \subseteq M \) and \(\omega(H)q \subseteq M \). Let \(\alpha_{H,q} \) be as in the Lemma 5, then by the Lemma 2, we see that \(\alpha_{H,q} \) extends uniquely to \(R \)-homomorphism from \(\mathcal{R} \) to \(Q_\tau(M) \) and so there exists unique element \(\tilde{q} \in Q_\tau(M) \) satisfying the condition that \((h)\alpha_{H,q} = h\tilde{q} \) for all element \(h \in H \). We define a function \(\tilde{\alpha}_n : Q_\tau(M) \rightarrow Q_\tau(M) \) by setting \(\tilde{\alpha}_n(q) = \tilde{q} \). This function is well-defined. Indeed, suppose that \(q \) is an element of \(Q_\tau(M) \) and let \(H \) and \(K \) be \(\tau \)-dense left ideals of \(R \) satisfying \(Hq \subseteq M \) and \(Kq \subseteq M \). Then \((H \cap K)q \subseteq M \) and \(H \cap K \) is \(\tau \)-dense left ideal of \(R \), by the Lemma 4 \(\alpha_{H,q} \) and \(\alpha_{K,q} \) define the same element \(\tilde{q} \).

Now we claim that such \(\tilde{\alpha}_n \) is anti-\(d \)-derivation of order \(n \) on \(Q_\tau(M) \). Indeed, let \(q \) and \(q' \) be elements of \(Q_\tau(M) \) and let \(a \) be an element of \(R \), then there exist \(\tau \)-dense left ideals \(H \) and \(H' \) of \(R \) satisfying \(Hq \subseteq M \) and \(H'q' \subseteq M \). Take \(K = H \cap H' \), then we have \(Kq \subseteq M \) and \(Kq' \subseteq M \), so \(K(q + q') \subseteq M \). Moreover, for each element \(k \in K \) we have

\[
(k)\alpha_{K,q+q'} = \tilde{\alpha}_n\left(\omega(k)(q + q')\right) = \sum_{i+j=n-1} \tilde{d}_i'(w(k))\tilde{d}_j'(q+q') - \sum_{i+j=n-1} \tilde{d}_i'(q+q')
\]

By the Lemma 2, the uniqueness of extension, this implies that \(\tilde{\alpha}_n(q + q') = \tilde{\alpha}_n(q) + \tilde{\alpha}_n(q') \). Similary there exists a \(\tau \)-dense left ideal \(H \) of \(R \) satisfying conditions that \(Hq \subseteq M \), \(Haq \subseteq M \), \(\omega(H)q \subseteq M \) and \(\omega(H)aq \subseteq M \), let \(K = H \cap w(H) \cap (H;a) \cap (w(H):a) \), by the Lemma 3, \(K \) is a \(\tau \)-dense left ideal of \(R \), we therefore have an \(R \)-homomorphism from \(\mathcal{R} \) to \(Q_\tau(M) \), which can be extended to from \(\mathcal{R} \) to \(Q_\tau(M) \). We see that

\[
(k)\alpha_{K,q} - (kw(a))\alpha_{K,q} = \tilde{\alpha}_n(\omega(k)aq) - \sum_{i+j=n-1} \tilde{d}_i'(w(k))\tilde{d}_j'(aq)
\]

By the Lemma 2, this implies that \(\tilde{\alpha}_n(\omega(k)aq) = \tilde{\alpha}_n(\omega(k)aq) + \sum_{i+j=n-1} \tilde{d}_i'(w(k))\tilde{d}_j'(aq) \). Thus \(\tilde{\alpha}_n \) is an anti-\(d \)-derivation of order \(n \) on \(Q_\tau(M) \).

Now we prove that \(\tilde{\alpha} \) restricts to \(\tilde{\alpha} \) on \(M \). Indeed, for every \(m \in M \), then we take \(H \) equal to \(R \) itself and so we see that for any \(a \in R \) we
have $\bar{d}_n(am) = \sum_{i+j=n-1} d_i(a)\bar{d}_{j}(m) - d_n(a)m = w(a)d_n(am)$, which implies that $\bar{d}_n(am) = \bar{d}_n(am)$ for each $n \in \mathbb{S}$.

In the case of infinite order, we use the Lemma 1 not only ring R, but also module M and $Q_\tau(M)$, i.e. for any infinite order (anti-d^-) derivation $d_\infty(\bar{d}_\infty$ or \bar{d}_∞) on $R(M$ or $Q_{\tau}(M))$, then there exists unique sequence (anti-d^-) derivations $d_n(\bar{d}_n$ or \bar{d}_n) on $R(M$ or $Q_{\tau}(M))$ such that we can write $d_\infty = \lim d_n(\bar{d}_n = \lim \bar{d}_n$ or $\bar{d}_\infty = \lim \bar{d}_n$). For the given d_∞, there is unique sequence $\{d_n\}_{n \in \mathbb{N}}$ on M which we can write $\bar{d}_\infty = \lim d_n(\bar{d}_n$ or \bar{d}_n), by the finite order case we can extend each \bar{d}_n to \bar{d}_n on $Q_{\tau}(M)$ which restricts to \bar{d}_n to M. Now take \bar{d}_∞ as an inverse limit of such $\{d_n\}_{n \in \mathbb{N}}$ on $Q_{\tau}(M)$, then \bar{d}_∞ satisfies all results.

For the anti-d-derivations (of order 1) d on a ring R, then there exists a unique anti-d-derivation \bar{d} defined on R, the restriction of which to R is d, in the case τ is a faithful torsion theory on R-Mod ([6]). Now we generalize this result to the higher order case.

Theorem 7. Let d be an anti-d-derivation of order s on R and let τ be a faithful torsion theory on R-Mod. Then there exists a unique anti-d-derivation \bar{d} of order s defined on R, the restriction of which to R is d.

Proof. The existence of \bar{d} follows from the Theorem 6 and the fact that $Q_{\tau}(R)$ and R are isomorphic, as left R-modules. To show uniqueness assume that d' and d'' be anti-d-derivations of order s defined on R and $d' = d''$ on R. For any non zero element $q \in R$, there is a τ-dense left ideal H of R satisfying conditions $Hq \subseteq R$ and $w(H)q \subseteq R$, take $K = H \cap w(H)$ as τ-dense ideal of R, then for any element $k \in K$ we have $0 = (d'_n - d''_n)(kq) = w(k)(d'_n - d''_n)(q)$, for each $n \in \mathbb{S}$. Thus we have $w(K)(d'_n - d''_n)(q) = 0$, for each $n \in \mathbb{S}$. Since $w(K)$ is a τ-dense ideal of R, this implies that $d'_n(q) = d''_n(q)$ for all $q \in R$.

Corollary 8. Let d be an anti-d-derivation of order s on R and \bar{d} be anti-d-derivation of order s on a left R-module M. Suppose that τ is a torsion theory on R-Mod satisfying the condition, for each $n \in \mathbb{S}$, $\bar{d}_n(T_{\tau}(M)) \subseteq T_{\tau}(M)$. Then there exist an anti-d-derivation \bar{d} of order s on $Q_{\tau}(M)$ in such manner that the diagram

\[
\begin{array}{ccc}
M & \longrightarrow & Q_{\tau}(M) \\
\bar{d} \downarrow & & \downarrow \bar{d} \\
M & \longrightarrow & Q_{\tau}(M)
\end{array}
\]
commutes.

Proof. Define d' on $M/T_\tau(M)$ by denoting for each $n \in S$, $d'_n : m + T_\tau(M) \rightarrow \mathcal{A}_n(m) + T_\tau(M)$, by the condition $\mathcal{A}_n(T_\tau(M)) \subseteq T_\tau(M)$, such a map is well-defined. And $M/T_\tau(M)$ is τ-torsionfree left R-module, by the Theorem 6, this derivation d' can be extended to anti-d-derivation \mathcal{A} on $Q_\tau(M)$ making the diagram commutes.

Now we consider inner derivation of order s on R, if there exists an element $\alpha = (a_n)_{n \in S} \in R \times R \times \cdots \times R (s+1 \text{-times})$ such that $d = \Delta(\alpha)$, where

$$d_1(x) = \Delta(\alpha)_1(x) = a_1 x - x a_1,$$

$$d_2(x) = \Delta(\alpha)_2 = a_1^2 x - a_1 x a_1 + a_2 x - x a_2,$$

$$d_3(x) = \Delta(\alpha)_3(x) = a_1^2 x - a_1^2 x a_1 + a_1 a_2 x + x a_2 a_1 - a_1 x a_2 - a_2 x a_1 + a_3 x - x a_3, \ldots$$

we call d as an inner derivation of order s of R. ([1,4])

Corollary 9. The extension of any inner derivation d of order s of R to a derivation \mathcal{A} on R, is again inner. In particular, if τ is torsion-free, such extension \mathcal{A} is unique and which restricts to d on R.

Proof. Let d be any inner derivation of order s on R, then there exists a sequence $\alpha = (a_n)_{n \in S}$ such that $d = \Delta(\alpha)$. Since R is τ-torsionfree $T_\tau(R) = 0$, so for each $n \in S$ $d_n(T_\tau(R)) = 0 \subseteq T_\tau(R)$. Take $w =$ identity map on R in the Corollary 8, there exists an extension \mathcal{A} on $Q_\tau(R)$, so we can define a derivation \mathcal{A} on $Q_\tau(R)$ for the element $\alpha = (a_n)_{n \in S}$ as follows $\mathcal{A}(q) = \Delta(\alpha)(q)$, then \mathcal{A} is an inner derivation of order s. On the other hand τ is faithful, by the Theorem 7, such extension is unique and which restricts d on R.

If we take $S = \{0, 1\}$, by the Lemma 1 we have following Corollary.

Corollary 10. If $\alpha : R \rightarrow R$ is the inner derivation of R defined by an element α and if τ is a faithful torsion theory on $R-\text{Mod}$ then α defines an inner derivation \mathcal{A}_α on R, which restricts to α on R. ([3]).

References

4. A. Nowicki, Inne Derivations of Higher Orders, Tsukuba J. Math. 8(2),
Extensions of higher anti-derivations to modules of quotients 31

Kyungpook University
Taegu 635, Korea