A GENERALIZATION OF PRIME IDEALS IN SEMIGROUPS

HYEKYUNG KIM

In [3], Murata and his coauthors defined f-prime ideals in rings and obtained analogous results of Van der Walt [4]. In this paper, f-prime ideals in semigroups are defined and obtained results similar to those in [3]. One found that the f-radical of an ideal A of a semigroup defined by the author is the intersection of all f-prime ideals containing A. Under the left regularity assumption, the radical of an ideal A turns out to be the f-radical of A. Moreover, the properties of primary ideals in semigroups [1] such as the uniqueness of decomposition theorem by Laske-Noether could be extended for f-primary ideals.

1. f-prime ideals and the f-radical of an ideal

Throughout, S will denote a semigroup and F will denote the set of all functions f from S into the set of all ideals in S such that, for each s in S,

1. $s \in f(s)$,
2. $x \in f(s)$ implies $f(x) \subseteq f(s)$,
3. $x \in f(s) \cup A$ implies $f(x) \subseteq f(s) \cup A$ for each ideal A of S.

It is clear that the function f defined by $f(s) = (s)$, the principal ideal generated by s, is in F. For a fixed ideal B of S, the function defined by $f(s) = (s) \cup B$ is also in F.

Definition. A subset Q of S is called a p-system iff $(a)(b) \cap Q \neq \phi$ for any a, b in Q. Q is said to be an sp-system iff $(a)^2 \cap Q \neq \phi$ for each a in Q.

It is evident that every subsemigroup of S is a p-system and every p-system is an sp-system. Let $S = \{a, b, c, d\}$ be the semigroup with the
following multiplication table:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>d</td>
</tr>
</tbody>
</table>

As is easily seen, \{a, b\} is a \(p\)-system and \{b, c, d\} is an \(sp\)-system which is not a \(p\)-system.

Definition. For \(f \in F\), a subset \(Q\) of \(S\) is called an \(f\)-system \([sf\text{-}system]\) iff it contains a \(p\)-system \([sp\text{-}system]\) \(Q^*\) such that \(Q^* \cap f(q) = \phi\) for each \(q\) in \(Q\). In each case, \(Q^*\) will be called a kernel of \(Q\).

A proper ideal \(P\) in \(S\) is called \(f\)-prime \([f\text{-}semiprime]\) iff its complement \(P^c\) is an \(f\)-system \([sf\text{-}system]\).

It is clear that every \(f\)-prime ideal is \(f\)-semiprime.

A proper ideal \(P\) of \(S\) is completely prime iff \(xy \in P\) for some \(x, y\) in \(S\) implies \(x \in P\) or \(y \in P\). A proper ideal \(P\) of \(S\) is prime if \(XY \subseteq P\) where \(X\) and \(Y\) are ideals of \(S\) implies \(X \subseteq P\) or \(Y \subseteq P\).

In a commutative semigroup with identity, every prime ideal is completely prime. Every completely prime ideal in \(S\) is \(f\)-prime, but the converse is not true.

Example (1) Let \(N\) be the semigroup of positive integers with the usual product. Consider a function \(f\) from \(N\) into the set of all ideals in \(N\) which is defined by \(f(n) = 3n \cup nN\). It is clear that \(f\) is contained in \(F\). Let \(P = 4N\) and \(Q^* = 3N - 6N\). Then \(Q^* \subseteq P^c\) and for any \(q_1, q_2\) in \(Q^*\), \((q_1) \cap Q^* \neq \phi\) which proves that \(Q^*\) is a \(p\)-system. Since \(f(q) \cap Q^* \neq \phi\) for any \(q \in P^c\), the ideal \(P\) is \(f\)-prime. But \(P\) is not prime. In this case, every prime ideal is \(f\)-prime.

(2) Let \(T = \{(x, y) | 0 \leq x \leq 1, 0 \leq y \leq 1, x + y \leq 1\}\) be a triangle semigroup under \((x, y)(x', y') = (xx', xy' + y)\). Consider a function \(f\) from \(T\) into the set of all ideals in \(T\) defined by \(f((x, y)) = ((x, y)) \cup ((\frac{1}{2}, 0))\). Then \(f \in F\). Since \((1, 0)\) is a unit and \((x, y) T \subseteq T(x, y), ((x, y)) = \)
A generalization of prime ideals in semigroups 209

\[T(x, y) \text{. Let } P = T \left(\frac{1}{4}, \frac{3}{4} \right) \text{. Take } Q^* = \{ (x, 0) \mid 0 < x \leq 1 \} \subseteq P \text{, it is clearly that } Q^* \text{ is a } p\text{-system. Since } f(a) \cap Q^* \neq \emptyset \text{ for any } a \in P, \text{ } P \text{ is } f\text{-prime but not prime. For, } (\left(\frac{1}{2}, \frac{1}{2} \right)) = T \left(\frac{1}{2}, \frac{1}{2} \right) \subseteq P \text{ and } \left(\frac{1}{3}, \frac{1}{2} \right) = T \left(\frac{1}{3}, \frac{1}{2} \right) \subseteq T T \left(\frac{1}{2}, \frac{1}{2} \right) \left(\frac{1}{3}, \frac{1}{2} \right) = T \left(\frac{1}{6}, \frac{3}{4} \right) \subseteq P. \]

Proposition 1.1. For any \(f\text{-prime } [f\text{-semiprime}] \) ideal \(P \) of \(S \), \(f(a_1) f(a_2) \subseteq P \) implies \(a_1 \in P \) or \(a_2 \in P \) \([f(a)^2 \subseteq P \text{ implies } a \in P]. \)

Proof. Suppose \(a_i \in P^c (i=1,2) \). Since \(P^c \) is an \(f\text{-system} \), there exists a \(p\text{-system } Q^* \subseteq P^c \) such that \(f(a_i) \cap Q^* \neq \emptyset \) \((i=1,2) \). Let \(x_1 \in f(a_1) \cap Q^* \) and \(x_2 \in f(a_2) \cap Q^* \). Then \((x_1)(x_2) \cap Q^* \neq \emptyset \) and hence \(f(x_1)f(x_2) \cap Q^* \neq \emptyset \) which is a contradiction. The proof of the other half could be done similarly.

It is clear that the union of prime ideals in \(S \) is prime. However, the (finite) union of \(f\text{-prime ideals in } S \) need not be \(f\text{-prime. In Example (1), let } P_1=3N \text{ and } P_2=4N \cup 6N. \text{ Then } f(2)f(2) \subseteq P_1 \cup P_2 =3N \cup 4N \text{ and } 2 \notin P_1 \cup P_2. \text{ Then by Proposition 1.1, } P_1 \cup P_2 \text{ is not } f\text{-prime.} \)

Let \(A \) be any ideal of \(S \). Then the ideal \(\cup f(a) \) is denoted by \(f(A) \). Clearly \(A \subseteq f(A) \) and \(f(A) \subseteq f(B) \) if \(A \subseteq B \). Moreover, \(f(a) = f(\{a\}) \) since \(x \in (a) \subseteq f(\{a\}) \) implies \(\cup f(x) \subseteq f(a) \). In general, \(f(A) \cap A = A. \) But if \(f(a) = (a) \), then \(f(A) = A. \)

Proposition 1.2. Let \(P \) be an \(f\text{-prime } [f\text{-semiprime}] \) ideal of \(S \).

(i) \(f(a) f(b) \subseteq P \) implies \(a \in P \text{ or } b \in P \) \([f(a)^2 \subseteq P \text{ implies } a \in P]. \)

(ii) \(f(A)f(B) \subseteq P \) implies \(f(A) \subseteq P \text{ or } f(B) \subseteq P, \text{ for any ideals } A, B \text{ of } S \) \([f(A)^2 \subseteq P \text{ implies } f(A) \subseteq P]. \)

Proof. Obviously (ii) implies (i). Let \(a, b \in P^c \), then \(f(a) \cap P^c \neq \emptyset \) and \(f(b) \cap P^c \neq \emptyset \). Since \(f(a) = f(\{a\}), f(\{a\}) \cap P^c \neq \emptyset \) and \(f(\{b\}) \cap P^c \neq \emptyset \). Thus \(f(\{a\})f(\{b\}) \cap P^c \neq \emptyset \) implies \(f(a)f(b) \cap P^c \neq \emptyset \). The proof of the other half is similar.

Definition. A subset \(A \) of \(S \) is called \textit{semiprime} if for \(a \in S \), \(a^2 \in A \)
implies $a \in A$.

Corollary 1.3. If $f(a) = (a)$ for each a in S, then prime and f-prime are synonyms. Moreover, under the same condition, semiprime and f-semiprime are synonyms whenever S is commutative.

Definition. Let A be an ideal of S. Then $r_f(A) = \{x \mid Q \cap A \neq \phi \text{ for each } f\text{-system } Q \text{ containing } x\}$, $r_{sf}(A) = \{x \mid Q \cap A \neq \phi \text{ for each } sf\text{-system } Q \text{ containing } x\}$ will be called the f-radical and sf-radical of A respectively.

Theorem 1.4. Let A be an ideal of S. Then $r_f(A) \cup r_{sf}(A)$ is the intersection of all f-prime $[f$-semiprime$]$ ideals of S.

Proof. Let C be the intersection of all f-prime ideals containing A. It is clear that $r_f(A) \subseteq C$. Conversely, if $x \notin r_f(A)$, then there exists an f-system Q such that $x \in Q$ and $Q \cap A = \phi$. Let P be the union of all ideals B such that $A \subseteq B$ and $B \cap Q = \phi$ and let Q^* be a kernel of Q. Then $Q^* \subseteq P^c$. For any element a in P^c, $A \subseteq f(a) \cup P$ and P is maximal with respect to the properties $A \subseteq P$ and $P \cap Q = \phi$. Since $P \subseteq f(a) \cup P$, $(f(a) \cup P) \cap Q = \phi$. Thus $f(a) \cap Q \neq \phi$ and there exists q in Q such that $q \in f(a)$. By a property of f, $f(q) \subseteq f(a)$. Since Q is an f-system, $f(q) \cap Q^* \neq \phi$. It follows that $f(a) \cap Q^* \neq \phi$ and P^c is an f-system with the kernel Q^*. Hence P is f-prime and $x \notin P$, i.e., $C \subseteq r_f(A)$.

For any ideal A of S, we denote

$\overline{A} = \{x \in S \mid f(x)^n \subseteq A \text{ for some positive integer } n\}$

$A' = \{x \in S \mid x^n \subseteq A \text{ for some positive integer } n\}$.

Let $x \in \overline{A}$. Then $f(x)^n \subseteq A \cap r_f(A)$ for some n. Hence $x \in r_f(A)$ by Proposition 1.1. Thus $\overline{A} \subseteq r_f(A)$. Let $x \in S$ and $x^n \notin A$ for all n. Then $\{x, x^2, \ldots, x^n, \ldots\}$ is an f-system of S and $\{x, x^2, \ldots\} \cap A = \phi$. Hence $x \notin r_f(A)$ and $r_f(A) \subseteq A'$. Therefore, $\overline{A} \subseteq r_f(A) \subseteq A'$.

Theorem 1.5. Let A be an ideal of a left regular semigroup S. Then $r_f(A) = A'$ for any $f \in F$.

Proof. Suppose $x \notin r_f(A)$. It is well known that S is left regular iff every left ideal of S is semiprime [5]. Hence A is semiprime. It follows that for each positive integer n, $x^n \notin A$ implies $x \notin A$. Therefore $x \notin A$ implies $x^n \notin A$ for each n. Hence $x \notin A'$.
Let Q^* be a p-system such that $Q^* \cap A = \emptyset$. Let C be the collection of all p-systems which contain Q^* and do not meet A. Since $Q^* \subseteq C$, C is nonempty. It is clear that the union of a chain in C is in C, and hence C has a maximal element M^*. Let $M = \{ x \in S | f(x) \cap M^* \neq \emptyset \} \cap A^c$. Then M is an f-system with the kernel M^* and $M \cap A = \emptyset$. As is seen in the proof of Theorem 1.4, there exists an f-prime ideal P such that $A \subseteq P$ and $P \cap M = \emptyset$. Since P^c is an f-system with the kernel M^*, $P^c = M$.

Definition. An f-prime ideal P is called a minimal f-prime ideal belonging to an ideal A iff P contains A and there exists a kernel Q^* for the f-system P^c such that Q^* is a maximal p-system which does not meet A.

It is clear that any f-prime ideal P containing A contains a minimal f-prime ideal belonging to A and the f-radical of an ideal A coincides with the intersection of all minimal f-prime ideals belonging to A.

In general, an arbitrary intersection of f-prime ideals of S may not be f-prime. However, an arbitrary intersection of f-semiprime ideals of S is f-semiprime. It follows that an arbitrary intersection of f-prime ideals of S is f-semiprime, and an ideal A in S is f-semiprime iff $r_f(A) = A$.

2. f-primary ideals

Definition. An element a is *(right)* f-related to an ideal A of S iff for each $b \in f(a)$, there exists an element $c \in A$ such that $cb \in A$. An ideal B is *(right)* f-related to an ideal A of S iff every element of B is f-related to A.

Lemma 2.1. Let A be an ideal of S and let K be the set of all elements of S which are not f-related to A. Then K is an f-system.

Proof. Let q be an element of K. Then there exists b in $f(q)$ such that $cb \notin A$ for every element $c \in A$. Let K^* be the set of all such b. Then K^* is a p-system and $f(q) \cap K^* \neq \emptyset$. Hence K is an f-system with the kernel K^*.

In Example (1), let $A = 4N$ and $f(a) = aN \cup 3N$ for any $a \in S$. Then $3 \in f(a)$ and $3(4n+i) \in A$ for $i = 1, 2, 3$. It follows that for any $c \in A$, $3c \notin A$. Hence A is not f-related to A. However, each element of a proper ideal A is f-related to A if f is defined to be $f(a) = (a)$ for each
a in S.

For the rest of this section, we assume that

(\alpha) Every ideal \(A\) of \(S\) is \(f\)-related to \(A\)

Proposition 2.2. The \(f\)-radical \(r_f(A)\) of an ideal of \(S\) is \(f\)-related to \(A\).

Proof. Let \(K\) be the set of all elements of \(S\) which are not \(f\)-related to \(A\). Suppose \(x \in r_f(A)\) and \(x\) is not \(f\)-related to \(A\). Then by Lemma 2.1, \(K\) is an \(f\)-system containing \(x\). It follows that \(K \cap A \neq \emptyset\), which contradicts the assumption (\(\alpha\)).

Let \(K\) be the set of all elements of \(S\) which are not \(f\)-related to \(A\). Then \(K\) is an \(f\)-system and \(K \cap A = \emptyset\) by Lemma 2.1 and the assumption (\(\alpha\)). Let \(P\) be the union of all ideals which are \(f\)-related to \(A\) and do not meet \(K\). As the proof of Theorem 1.4, \(P\) becomes \(f\)-prime. This unique maximal ideal \(P\) will be called the maximal \(f\)-prime ideal belonging to \(A\). By the assumption (\(\alpha\)), \(P\) contains \(A\). Since an element \(x\) is \(f\)-related to an ideal \(A\) iff \(f(x)\) is \(f\)-related to \(A\), every element \(f\)-related to \(A\) is contained in \(P\).

For ideals \(A\) and \(B\) of \(S\) and \(x \in S\), we adopt the notation \(A : x = \{y \in S \mid f(y)f(x) \subset A\}\) and \(A : B = \cap \{A : x \mid x \in B\}\)

Proposition 2.3. Let \(A\) be an ideal of \(S\) and \(b \in S\). If \(A : b \neq \emptyset\), then \(A : b\) is an ideal containing \(A\).

Proof. Let \(x \in A : b\) and \(s \in S\). Then \(x \in f(x)\) and \(xs \in f(x)\). It follows that \(f(xs) \subset f(x)\) and \(f(xs)f(b) \subset f(x)f(b) \subset A\). Thus \(xs \in A : b\). Similarly, \(sx \in A : b\). Let \(a \in A\) and \(x \in A : b\). Then \(xa \in A : b \cap A\), and \(f(xa)f(b) \subset A\). For any \(a' \in A\), \(f(a') \subset f(xa) \cup A\) since \(a' \in f(xa) \cup A\). Then \(f(a')f(a) \subset (f(xa) \cup A)f(b) = f(xa)f(b) \cup A f(b) \subset A\), and hence \(a' \in A : b\).

Let \(P\) be the maximal \(f\)-prime ideal belonging to an ideal \(A\) of \(S\) and let

\[
A_p = \begin{cases}
\bigcup_{s \in P} (A : s) & \text{if } P \neq S \\
A & \text{if } P = S.
\end{cases}
\]

If \(f(a) = (a)\), for any \(a\) of \(S\), then \(A_p \neq \emptyset\) since \(A \subset A : s\) for any
A generalization of prime ideals in semigroups

$s
\not\in A$. In Example (1), let $A=4N$ and $P=2N$. Then for any $s\in S$, $9N \subset f(x)f(s)$. It follows that $A : s = \{x \in S | f(x)f(s) \subset 4N\} = \phi$, and hence $A_p = \phi$ whenever $P \neq S$.

For the rest of this section, we will also assume that

(β) For any ideals A and B with $B \subseteq r_f(A)$, $A : B \neq \phi$.

Proposition 2.4. Let P be the maximal f-prime ideal belonging to an ideal A of S. Then $A = A_p$.

Proof. By the assumption (β), $A_p \neq \phi$. For any element x in A_p, there exists $s \in P^c$ such that $f(x)f(s) \subset A$. Since s is not f-related to A, there exists $s' \in f(s)$ such that $cs' \in A$ implies $c \in A$. Then $xs' \in A$, and hence $x \in A$. Therefore $A = A_p$.

Definition. Let K be an f-system in S. A kernel K^* of K is said to be dense in K iff $K^* \cap A \neq \phi$ for any ideal A in S with $K \cap A \neq \phi$.

If $f(a) = (a)$ for any a in S, then every kernel K^* of an f-system K is dense in K. However, in Example (1), since $P = 4N$ is f-prime, P^c is an f-system with the kernel $K^* = 3N - 6N$. Then $K^* \cap 6N = \phi$ while $P^c \cap 6N \neq \phi$, and hence K^* is not dense in P^c.

Definition. An ideal A of S is (right) f-primary iff $f(a)f(b) \subset A$ implies $a \in A$ or $b \in r_f(A)$.

Every f-prime ideal must be f-primary by Proposition 1.1.

Proposition 2.5. Let A and B be ideals of S. Then

1. $A \subseteq B$ implies $r_f(A) \subseteq r_f(B)$
2. $r_f(r_f(A)) = r_f(A)$
3. $r_f(AB) = r_f(A \cap B) = r_f(A) \cap r_f(B)$ if every f-system in S has a dense kernel.

Proof. Clearly (1) and (2) hold. Now $r_f(AB) \subseteq r_f(A \cap B) \subseteq r_f(A) \cap r_f(B)$ by (1). Let $x \in r_f(A) \cap r_f(B)$ and let K be any f-system containing x. Then $K \cap A \neq \phi$ and $K \cap B \neq \phi$. Since K has the dense kernel K^*, $K^* \cap A \neq \phi$ and $K^* \cap B \neq \phi$. Let $a \in K^* \cap A$, $b \in K^* \cap B$. Then $(a)(b) \cap K^* \neq \phi$. Since $(a)(b) \subset AB$, $AB \cap K^* \neq \phi$ and hence $AB \cap K \neq \phi$, which means $x \in r_f(AB)$.

Corollary 2.6. Assume that every f-system in S has a dense kernel.
Let Q and T be f-primary ideals such that $rf(Q) = rf(T)$. Then $Q \cap T$ is an f-primary ideal and $rf(Q \cap T) = rf(Q) = rf(T)$.

Proposition 2.7. An ideal A is f-primary iff $A : B = A$ for every ideal $B \subset rf(A)$.

Proof. Suppose A is f-primary and B is an ideal such that $B \subset rf(A)$. By the assumption (β), $A : B \neq \emptyset$ implies $A \subset A : B$. Let $b \in B$ and $b \notin rf(A)$. For each element $x \in A : B$, $x \in A$ since A is f-primary. Hence $A : B \subset A$ implies $A : B = A$. Conversely, suppose $f(a)f(b) \subset A$ and $b \notin rf(A)$. Then $f(b) \notin rf(A)$. Hence $A : f(b) = A$ implies $f(a)f(b') \subset f(a)f(b) \subset A$, for every $b' \in f(b)$. Therefore $a \in \cap \{A : b'|b' \in f(a)\} = A : f(b) = A$.

Definition. If an ideal A can be written as $A = A_1 \cap A_2 \cap \ldots \cap A_n$, where A_i is an f-primary ideal for each i, it is called an f-primary decomposition of A. Every A_i is called an f-primary component of A.

A decomposition is called irredundant iff $\bigcap_i A_i \subset A_i$ for each i.

An irredundant f-primary decomposition is said to be reduced iff $rf(A_i) \neq rrf(A_j)$ for $i \neq j$.

If an ideal A of S has an f-primary decomposition and if every f-system in S has a dense kernel, then A has a reduced f-primary decomposition by Corollary 2.6.

In the rest of this section, we assume the following:

(γ) $A : A = S$ for any f-primary ideal A.

In Example (1), let $A = 4N$. Since $9N \subset f(x)f(a) \subset A$ for $a \in A$ and $x \in S$, $A : A = \emptyset$. Thus the assumption (γ) is essential. However, (γ) holds if $f(a) = (a)$ for every a in S.

Theorem 2.8. Let $A = A_1 \cap A_2 \cap \ldots \cap A_n = A'_1 \cap A'_2 \cap \ldots \cap A'_m$ be two reduced f-primary decompositions of A. Then $n = m$ and it is possible to renumber the f-primary components in such a way that $rf(A_i) = rf(A'_i)$ for $1 \leq i \leq n = m$.

Proof. Using Proposition 2.5, Proposition 2.7 and Corollary 2.6, the proof follows as in Theorem 3.7 of [3].

3. f-primary semigroups

Proposition 3.1. Let A be an ideal of a semigroup S with identity 1.

If \(r_f(A) = S - H(1) \), then \(A \) is \(f \)-primary. Where \(H(1) \) is the maximal subgroup containing 1.

Proof. Let \(f(x)f(y) \subseteq A \) and \(x \not\in A \). Suppose \(y \not\in r_f(A) \). Then \(f(y) \not\subseteq r_f(A) = S - H(1) \), and hence \(f(y) = S \). Then \(f(x)f(y) = f(x)S = f(x) \subseteq A \) and \(x \in A \) which is a contradiction. Thus \(A \) is \(f \)-primary.

Proposition 3.2. Let \(S \) be a semigroup with identity 1 and let every \(f \)-system in \(S \) has a dense kernel. Then for any \(n \in \mathbb{N} \), \(M^n \) is \(f \)-primary, where \(M = S - H(1) \).

Proof. By Proposition 2.5 (3), \(r_f(M^n) = r_f(M) \cap \ldots \cap r_f(M) = M \cap \ldots \cap M \). Hence \(M^n \) is \(f \)-primary by Proposition 3.1.

Definition. A semigroup \(S \) is called \(f \)-primary iff every ideal of \(S \) is \(f \)-primary.

Theorem 3.3. Let \(S \) be a semigroup with identity 1. If \(S \) has no \(f \)-prime ideal except \(S - H(1) \), then \(S \) is an \(f \)-primary semigroup. The converse is not true as in shown in [2].

Proof. Let \(A \) be a proper (nonzero) ideal. Then \(r_f(A) = S - H(1) \). By Proposition 3.1, \(A \) is \(f \)-primary.

Theorem 3.4. Let \(S \) be a left regular semigroup. If the set of all \(f \)-prime ideals of \(S \) is linearly ordered, then \(S \) is \(f \)-primary.

Proof. Let \(A \) be an ideal of \(S \) and let \(f(x)f(y) \subseteq A \). If \(x \not\in A \), \(x^n \not\in A \) for each positive integer \(n \) by the left regularity of \(S \). Then \(x \not\in r_f(A) \) by Theorem 1.5. Since \(f \)-prime ideals are linearly ordered, \(r_f(A) \) is \(f \)-prime. Now, since \(f(x)f(y) \subseteq r_f(A) \), \(y \in r_f(A) \) by Proposition 1.1.

References

Kyungpook National University
Daegu 635, Korea