A Study on the Clothing Pressure variation according to arm movement and ease of basic pattern

Cho, Jung Mee-Kim, Hae Kyuong
Dept. of Clothing & Textiles, Graduate School Yonsei University
(1986.7.30 결수)

Abstract

The objectives of this study were:
1. To investigate the relationship between arm movement and clothing pressure in the upper arm and shoulder blade area.
2. To find out the relationship between ease of basic pattern and clothing pressure in the upper arm and shoulder blade area.
3. To study any interaction between arm movement and ease of clothing on the clothing pressure.

This study was an experimental research using the measuring devices of clothing pressure. The subjects were the unmarried college women.

Arm movements were 3 types (45°, 90°, 135°) to the horizontal direction. The ease of basic pattern in the breast was 3 types (4 cm, 6 cm, 8 cm).

The statistical analyses used in this study included mean, standard deviation and one-way analysis of variance.

The results obtained from this research were as follows;
1. The whole clothing pressure increased as the angle of the arm movement increased. Part of upper arm and shoulder blade above axillary gave high clothing pressure while part of upper arm and shoulder blade above upper breast, low pressure. Difference between highest clothing pressure and lowest clothing pressure increased as the arm movement did.
2. The whole clothing pressure increased as the ease of the basic pattern in breast decreased. No matter how the ease of basic pattern in the breast area varied, the points where generally showed high and low pressure were identical.
3. The whole arm pressure increased as the movement angle increased and the ease of pattern in breast area decreased. Difference between highest clothing pressure and lowest clothing pressure increased as the movement angle increased and the ease decreased.
I. 緒論

인간이 의복을 착용하였을 때 의복과의 접촉은 신체에 중요한 영향을 미치며, 의복의 무게, 의복형태 또는 사용여건에 따라 신체에 가해지는 압력을 의복기여한다. \(\text{저의찬 의복사는 신체에 나쁜 영향을 미치며, 의복 착용에서 어느 정도의 압박은 의할 수 없다 하더라도 의복의 무게는 얼마든 있다.}\) 따라서 신체에 가해지는 의복의 무게와 부위를 알려서 가능한 한 그 부담을 없을 필요가 있다.

의복과 의복기의 근본 연구들은 미야 (1967)의 strain gauage를 사용하여 여파괴 속도 측정부위에서 피부, 뼈주, 혈류이 변화에 따른 의복기의 측정한 연구의 \(\text{田村}^{(9)}\) (1979)의 측정의 여부와의 소매부위를 변화시킨 조영제, 착용시켜 소매부분에 가해지는 압력을 측정한 연구, \(\text{湯原}^{(1984)}\)의 신체구간부 의복기의 응용 연구에 대해서 실험의 연구가 있었다.

그러나 구체적으로는 의복에 가해진 압박이 신체의 어떤 부분에 유호하게 가해지는 것인지 또 신체의 몸동작에 따라 어떻게 변화하는지에 대한 연구는 그 수가 많지 않다. 따라서 본 연구에서는 그 연속적인 방법으로 상부신체에 혈류가 가장 많다고 보는 \(\text{上肢과} \text{肩胛骨} \text{부위에서, 여부산과 신체 동작에 따른 의복기의 변화를 연구함으로써 기능적인 의복 구성에 도움을 주는데 그 의의를 두고 있다.}\)

본 연구의 목적은 1) 上肢의動作 변화에 따른 上肢와 \text{肩胛骨} \text{부위의 의복기에 측정하여} \text{動作 변화와 의복기의 관계를 파악한다.} 2) \text{신체의 여부산} \text{신체의 변화} \text{상} \text{과} \text{肩胛骨} \text{부위에서의 의복기에} \text{측정하여 여부산과 의복기의 관계를 파악한다.} 3) 의복기에 영향을 미치는 신체 \text{動作 변화와 여부산과의 관계를 비교 분석한다.}\)

II. 研究方法 및 節次

本研究는 衣服의 측정기구를 사용한 服装研究 研究로서 이것은 의복의 복용을 측정하여, 실험의 실현으로의

A. 被験者の選定

被験자는 임의의 선정한 20~24세의 여학생 6명으로, 「신체의 표준의 측정을 위한 국민체위 조사연구 보고서」의 여성 가슴둘레 분포표에 의한 large, medium, small, size에서 각 두 사람씩 선판하여 모두 여섯명의 피험자를 선정하였다.
사용 수행 sign pen, plastic 자(3 cm × 30 cm, 3 cm × 130 cm), 점은색 기준선 표시용 Tape, 옷감 제작기구, 제작기구목, 의자(높이 42 cm, 깊이 38 cm) 등을 사용하였으며 이외에 보조용구로서 계(1985)9)에 의해 제작된 토착 메시를 사용하였다.

1. 实驗服製作

實験服 제작은 林(1982)2)의 방법을 사용하였으며, 가슴둘레의 2에 4 cm(N1), 6 cm(N2), 8 cm(N3)의 각각의 벨트를 변화시켜 원형을 제작하였다. 실験服 제작에는 화목(cotton 100%, 면도 32 × 26 cm)을 사용하였으며, 기준선을 코삼 준비로 표시하여 제작 봉 제하였다. 실험실에서 의복의 모양은 그림 1과 같다.

2. 衣服壓 제작기구의 제작 및 설치

本 연구에서는 鈴木(1985)9)의 연구에서 사용한 衣服壓 제작기구를 제작하여 사용하였다. 衣服壓 제작기구 제작은 그림 2와 같이 P.V.C. pack에 적게 2.5 mm의 P.V.C. tube를 연결한 다음 내부에 장착한 일정량 의 증류수를 주입시킨 것으로 P.V.C. pack에 압력이 가해지면 이 압력이 내부의 역제에 전달되어 tube 속의 역제의 높이가 상승하게 되어 있다. 제작기구 설치는 고정된 원색의 면에 3 cm × 130 cm의 자를 제작으로부터 90 cm 높이에 부착시키고 그림 3과 같이 발간석과 파란색의 衣服壓 제작기를 양측에 고정시켰다. 이와 같이 衣服壓 제작기를 설치하고, 여기서 20 cm 거리에 펑크자가 없을 수도록 의자를 설치하고, 펑크자의 뒤에 있던 부위에 펑크자가 놓이지 않게 의자에 또는 자

세를 계속 유지할 수 있도록 제작대를 설치하였으며 실험실의 온도는 24±1°C를 유지했다.

C. 實験節次

1. 計測부위 및 계측점 설정

上肢 및 肩胛骨부위는 背部 肩胛骨부위에서의 衣服壓을 측정하기 위하여 기준점을 (그림 4)와 같이 설정하였다.

2. 動作설정

上肢동작은 일반적으로 수직동작과 수평동작으로 이루어져 본 연구에서는 수평동작의 45°(M1), 90°(M2), 135°(M3)의 3가지 동작만을 선정하여 실시하였다.

(그림 5) 衣服壓 측정자세

(그림 4) 上肢와 肩胛骨부위의 기준점 설정

(그림 6) 衣服壓 제작기구 부착법
3. 衣服圧의 측정

① 피험자들은衣服圧 계측구에 앞서 설치한 의자에 앉아 다음 계측을 위해 반은 옷을 몇 수 <그림 5>의 같이 롱바른 자세를 유지하게 한다.

② 衣服圧 계측구들 <그림 6>과 같이 피험자의上肢과肩胛骨부위에 설정된 계측각 각각 다른 석의 계측기들 둘착시킨다.

③ 실림복을 착용시킨다.

④ 피험자에게 M_1, M_2, M_3의 등장을 하게 한다.

⑤ 衣服圧을 측정한다. 衣服圧의 측정은 실험복 착용상태의 경상세위에서 tube의 액체의 높이를 "0"으므로 설정하고 동작변화에 따라 계측구의 tube를 통해 상하로 이동하는 액체의 높이로 衣服圧의 바울을 측정 하여 단위는 cm로서 사용한다.

D. 研究의 際界點

本研究의界界點은 첫째, 피험자에게 과중한 動作을 요구하는 着装実験인 관계로 피험자의 수술 중동
히 설정하지 못하였으며, 둘째, 上肢 動作선정은 수명
動作의 3가지만을 선정하였고 수정動作을 포함시키지 않았다. 따라서 본 연구 결과의 적용범위를 일반화 할 경우에는 신중을 기해야 할 것이다.

Ⅲ. 結果 및 考察

A. 動作변화에 따른 衣服圧의 변화

動作변화에 따른 衣服圧의 결과는 <표 1>에 의하면
上肢과肩胛骨부위의 각 계측점에서動作자도 변화에
따라 衣服圧의 차이가 있는 것으로 나타났다. <표 1>
에 의하면動作변화와 衣服圧의 관계는 크기나 부위에
따라 다소 차이가 있었으나 계측점 $B_1, C_1, C_2, D_1, D_2, D_3, E_1, E_2, I_1, I_2, I_3$에서의動作자
가 M_1, M_2, M_3으로 경계에 따라 衣服圧은 증가하였으며,

<table>
<thead>
<tr>
<th>衣服圧</th>
<th>肩胛骨</th>
<th>上肢</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_1</td>
<td>4.5 6.6 0.3 0.4 0.5 6.3 7.7 3.8 11.4 2.8 6.5 5.0 7.4</td>
<td>7.6</td>
</tr>
<tr>
<td>M_2</td>
<td>8.5 2.1 0.6 4.3 2.1 11.5 14.7 9.1 2.8 7.2 12.7 14.6 23.3 25.6 11.7</td>
<td>13.4</td>
</tr>
<tr>
<td>N_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_1</td>
<td>6.2 4.1 1.4 1.6 0.4 4.3 5.6 3.0 2.4 2.1 2.9 3.4</td>
<td>4.6</td>
</tr>
<tr>
<td>M_2</td>
<td>5.3 1.8 4.3 8.0 1.8 9.4 13.0 9.0 12.8 7.5 8.6 10.9 19.2 23.9</td>
<td>10.3</td>
</tr>
<tr>
<td>N_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_1</td>
<td>5.6 5.6 0.2 0.1 0.2 3.8</td>
<td>3.4</td>
</tr>
<tr>
<td>M_2</td>
<td>6.6 5.3 2.4</td>
<td>2.7</td>
</tr>
<tr>
<td>N_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_1</td>
<td>6.1 2.5</td>
<td>7.7 10.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>動作자</th>
<th>M_1, M_2, M_3로 경계에 따라 衣服圧은 증가하였으며,</th>
</tr>
</thead>
</table>
| **표 1** 動作 변화에 따른 衣服圧

(단위 : cm) | 13.5 | 25.1 |
제측점 F₃, F₄, F₆에서는 작동자도가 증가함에 따라 침발성은 증가하였으며, 제측점 G₁, G₂, G₄에서는 작동자도의 증가에 따라 침발성은 감소하였다. 작동자도가 0°일 때의 침발성은 작동자도가 90°일 때 보다 작았으며, 작동자도가 증가함에 따라 침발성은 감소하였다. 작동자도가 0°일 때의 침발성은 작동자도가 90°일 때 보다 작았으며, 작동자도의 증가에 따라 침발성은 감소하였다. 작동자도가 0°일 때의 침발성은 작동자도가 90°일 때 보다 작았으며, 작동자도의 증가에 따라 침발성은 감소하였다.

그리고 작동자도의 증가에 따라 침발성의 크기는 차이가 있었지만 작동자도가 증가함에 따라 침발성은 감소하였다. 작동자도가 증가함에 따라 침발성은 감소하였다.

작동자도에 따른 침발성 변화에 따른 결과는 다음과 같다. 작동자도가 증가함에 따라 침발성은 감소하였다. 작동자도가 증가함에 따라 침발성은 감소하였다.

B. 여유분 변화에 따른 침발성 변화

여유분 변화에 따른 침발성 변화는 다음과 같다. 여유분 변화에 따른 작동자도의 변화에 따라 침발성은 감소하였다. 작동자도가 증가함에 따라 침발성은 감소하였다.
표 2 자 여유분에서의 동작변인과 옷감니하의 one-way ANOVA 표

여유분	B1	B2	B3	B4	B5	C1	C2	C3	C4	C5	D1	D2	D3	D4	E1	E2	E3		
N2	1.711	5.11	5.89	13.59	1.58	2.62	44	1.28	6.77	9.32	5.17	12.58	*	4.57	7.87	6.93	3.63	11.48	12.35
N	223.2	43.6	5.66	24.40	8.64	4.70	3.09	2.59	2.98	51.43	10.92	11.06	4.33	5.86	14.66	1.76	10.52	6.49	

여유분	E4	E5	F1	F2	F3	G1	G2	G3	G4	H1	H2	H3	H4	I1	I2	I3	I4	
N1	10.53	5.42	.486	.178	.17	3.82	2.64	3.84	1.15	1.54	1.34	5.84	8.62	5.49	10.00	20.38	22.38	9.61
N2	7.96	6.75	.682	.052	.29	1.49	.621	.44	.629	2.18	7.11	5.03	7.56	9.02	5.19	15.46	15.46	10.52
N	10.66	3.96	.282	.213	.37	1.68	.12	1.16	.20	1.87	2.86	2.39	.63	2.61	3.75	5.09	7.85	8.08

*p<0.5

표 3 여유분 변화에 따른 옷감니의 변화 (단위: cm)

| 여유분 | B1 | B2 | B3 | B4 | B5 | C1 | C2 | C3 | C4 | C5 | D1 | D2 | D3 | D4 | E1 | E2 | E3 |
|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| N1 | 4.5 | 6.6 | 0.3 | 0.4 | 0.5 | 6.3 | 7.7 | 3.8 | 7.4 | 2.3 | 6.5 | 5.0 | 7.4 | 7.6 | 5.2 | 5.8 |
| N2 | 5.2 | 4.1 | 1.4 | 1.6 | 0.4 | 4.3 | 5.6 | 3.0 | 2.4 | 2.1 | 2.9 | 3.4 | 4.6 | 3.4 | 1.5 | 2.3 |
| N3 | 5.6 | 5.6 | 0.2 | 0.1 | 0.2 | 3.8 | 3.4 | 1.6 | 1.9 | 2.5 | 3.6 | 2.3 | 1.5 | 1.2 | 2.3 | 3.5 |
| M1 | 8.5 | 2.1 | 0.6 | 4.3 | 2.11 | 2.14 | 1.7 | 9.1 | 2.8 | 7.2 | 12.7 | 14.6 | 23.5 | 26.2 | 41.7 | 13.4 |
| M2 | 5.3 | 1.8 | 4.3 | 8.0 | 1.8 | 9.4 | 13.0 | 9.0 | 12.8 | 7.5 | 8.8 | 10.9 | 19.2 | 22.3 | 21.0 | 3.0 |
| M3 | 6.6 | 5.3 | 2.4 | 2.4 | 2.7 | 9.6 | 12.8 | 9.4 | 11.9 | 2.7 | 9.5 | 9.6 | 15.3 | 14.5 | 15.0 | 8.0 |
| N1 | 1.4 | 0.1 | 8.2 | 11.7 | 4.0 | 4.9 | 15.8 | 5.9 | 19.0 | 9.0 | 24.6 | 34.5 | 36.0 | 34.6 | 44.2 | 22.2 |
| N2 | 3.0 | 2.1 | 6.2 | 10.1 | 3.2 | 6.3 | 10.7 | 8.1 | 11.7 | 8.3 | 11.8 | 123.1 | 29.6 | 37.9 | 9.14 | 10.6 |
| N3 | 5.1 | 2.5 | 7.7 | 10.4 | 4.6 | 7.3 | 9.5 | 11.6 | 4.1 | 12.8 | 16.0 | 14.6 | 28.6 | 24.0 | 29.4 | 12.0 |

D1, D2, D3, E1, E2, H1, H2, H3, H4에서는 여유분이 N1, N2, N3로 되어있으며, N3여유분이 말미에 따라 옷감니가 증가하였다. 그리고 계측점 E1, E2에서는 여유분 N1이 빠르다 여유분

여유분이 증가하면 텐력의 크기가 감소되고 영향을 받는 부위가 평균화 된다는 것을 의미한다.
여유분 변화에 따른 의복은의 변화에 대한 통계적 보이는 여유분 변화에 따른 의복 변화의 변화가 유의한 것임을 알 수 있었다. 각 계측점에서 여유분 변화에 따른 의복의 차이를 전반적인 통계적 분석(one-way analysis of variance)으로 검증하였으며 그 결과는 (표 4)와 같이, (표 4)에 의하면, 각 계측점 D1, E1, G1에서 여유분에 의한 의복의 차이가 $p<0.05$수준에서 유의한 것으로 나타났다.
이는 동작자도가 각 동작안에 소수의 부위에서 여유분에 의한 의복의 차이가 있다는 것을 의미한다. 그러므로 동작자가 의한 의복의 변화를 보다는 적절한 설계 의복의 추세치에서 나타난 의복의 차이가 통계적 으로 유의한 것으로 나타내지 못한 것은 의학적 차이가 소수였기 때문인 것으로 추측된다.

C. 의복에 대한 동작과 여유분의 관계
여유분의 중요성과 동작시에 어떤 변화가 있는지를 알아보기 위하여 동작변화에 따른 의복의 변화와 여유분 변화에 따른 의복의 변화를 함께 비교 분석하였으며, 그 결과는 다음과 같다.

(표 1)과 (표 2)에서 동작변화와 여유분의 의복의 변화에의 관계를 분석하여 보면, 여유분이 증가함에 따라 의복의 감소된 부위는 동작자도가 커짐에 따라 의복이 증가하였다.
그리고 동작자도 M_1, M_2, M_3로 커지고 여유분이 N_3, N_1, N_2로 작게됨에 따라 높은 텐력은 나타나는 계측점이 증가하였으며, 이것은 동작자도가 커지고 여유분이 작게됨에 따라 기름이 작게됨에 따라 의복이 증가한다는 것을 의미한다.

동작변화와 여유분에 따른 최고점과 최저점의 비교 분석하여 보면, 동작자도가 커지고 여유분이 작게됨에 따라 최고점은 감소하고 최고점은 증가하였으며, 따라서 최고점과 최저점의 차이도 증가하였다. 이것은 동작자도가 커지고 여유분이 작게됨에 따라 의복이 작게됨에 따라 의복이 감소하고 위치가 전개된 경우를 나타내는 것으로 이해된다.

여유분 변화에 따른 전체 계측점에서의 최고점, 최저점의 변화는 동작자도를 제외하고 여유분이 증가함에 따라 감소하였고, 최고점과 최저점의 차이도 동작자도를 제외하고 여유분이 작게됨에 따라 감소하였으며, 여유분 N_1에서는 이 차이가 현저히 감소하였다. 이것은 여유분이 작게됨에 따라 의복이 많이 발생하는 부위와 적게 발생하는 부위가 두드림 구분되거나 어떤 한계를 넘어

--- 17 ---
표 4 각 동작에서의 여유분 변화와 캐복의 one-way ANDVA 표

<table>
<thead>
<tr>
<th>동작</th>
<th>(B_1)</th>
<th>(B_2)</th>
<th>(B_3)</th>
<th>(B_4)</th>
<th>(B_5)</th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(C_3)</th>
<th>(C_4)</th>
<th>(D_1)</th>
<th>(D_2)</th>
<th>(D_3)</th>
<th>(D_4)</th>
<th>(D_5)</th>
<th>(E_1)</th>
<th>(E_2)</th>
<th>(E_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_1)</td>
<td>1.114.46</td>
<td>0.624.05</td>
<td>0.32</td>
<td>1.163.22</td>
<td>0.91</td>
<td>1.90</td>
<td>0.765</td>
<td>1.76</td>
<td>1.15</td>
<td>2.31</td>
<td>3.01</td>
<td>0.676</td>
<td>1.99</td>
<td>0.135</td>
<td>5.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M_2)</td>
<td>1.162.85</td>
<td>1.417.00</td>
<td>0.14</td>
<td>3.22</td>
<td>0.00</td>
<td>1.03</td>
<td>1.07</td>
<td>0.26</td>
<td>0.86</td>
<td>0.25</td>
<td>0.52</td>
<td>0.93</td>
<td>0.44</td>
<td>0.96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M_3)</td>
<td>2.89</td>
<td>0.45</td>
<td>0.928</td>
<td>0.15</td>
<td>3.22</td>
<td>5.00</td>
<td>0.946</td>
<td>0.58</td>
<td>0.96</td>
<td>1.08</td>
<td>2.02</td>
<td>5.27</td>
<td>3.24</td>
<td>0.01</td>
<td>0.78</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* \(p < .05\)

표 5 각 제시점에서 동작변화와 여유분변화의 one-way ANOVA 표

<table>
<thead>
<tr>
<th>변인</th>
<th>(B_1)</th>
<th>(B_2)</th>
<th>(B_3)</th>
<th>(B_4)</th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(C_3)</th>
<th>(C_4)</th>
<th>(D_1)</th>
<th>(D_2)</th>
<th>(D_3)</th>
<th>(D_4)</th>
<th>(D_5)</th>
<th>(E_1)</th>
<th>(E_2)</th>
<th>(E_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>동작</td>
<td>3.24</td>
<td>1.78</td>
<td>0.755</td>
<td>1.88</td>
<td>0.81</td>
<td>1.50</td>
<td>4.35</td>
<td>3.93</td>
<td>2.60</td>
<td>2.30</td>
<td>1.09</td>
<td>3.76</td>
<td>9.86</td>
<td>3.49</td>
<td>2.15</td>
<td>92.93</td>
</tr>
<tr>
<td>동작</td>
<td>2.34</td>
<td>0.34</td>
<td>0.85</td>
<td>1.47</td>
<td>0.70</td>
<td>1.46</td>
<td>2.88</td>
<td>1.27</td>
<td>0.40</td>
<td>0.76</td>
<td>2.92</td>
<td>0.83</td>
<td>0.71</td>
<td>1.12</td>
<td>1.05</td>
<td>0.50</td>
</tr>
<tr>
<td>동작</td>
<td>2.56</td>
<td>0.38</td>
<td>1.02</td>
<td>0.66</td>
<td>0.17</td>
<td>0.02</td>
<td>0.86</td>
<td>0.30</td>
<td>0.76</td>
<td>0.92</td>
<td>1.68</td>
<td>2.0</td>
<td>1.02</td>
<td>1.31</td>
<td>1.46</td>
<td>2.32</td>
</tr>
</tbody>
</table>

IV. 종 론

본 연구의 대상은 20~24세의 여학생 6명이며, 전체의 동작에서 많은 활동량과 활동범위를 가지는 상肢과 상부에 인접되어 있는 양복부 부위를 중심으로 옷집을 측정하여 동작과 옷물 변화에 따른 옷집의 변화를 연구하였다.

본 연구 결과로서 옷집의 변동은 다음과 같다.

1. 동작이 변화에 따른 옷집의 변화를 고려한 결과,
 1) 상肢 동작 범위가 커짐에 따라 높은 옷집을 받는 부위가 증가하였다.
 2) 상동작에서 발생한 상복부위와 양복부의 부위에서는 낮은 옷집을 받으며, 움직임범위의 상복부위와 양복부는 낮은 옷집을 받음이 알 수 있다.
 3) 최고점과 최저점의 차이가 동작범위가 커짐수록 증가하여 옷집이 높아지는 부위와 적게 받는 부위의 옷집의 차이가 증가함을 알 수 있다.

2. 여유분 변화에 따른 옷집의 변화를 고려한 결과
 1) 옷물 여유분이 적어짐에 따라 높은 옷집을 받는 부위가 증가하였다.
 2) 옷물 여유분에서 일반적으로 낮은 옷집과 낮은 옷집을 받는 부분이 감소하였다.
3) 축구와 그 밑의 아유분이 적응수록 관절의 각도와 좌우로 늘어 사실은 보통 채택되어 있다.
4) 운동시간, 위치, 운동의 주기적, 근육의 활동성, 운동의 강도, 운동의 종류, 성인의 활 동, 운동의 주기적, 근육의 활동성, 운동의 강도, 운동의 종류, 성인의 actu