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ON THE HYPOELLIPTIC BOUNDARY VALUE PROBLEMS

By Dae Hyeon Pahk*

1. Introduction

Let P(D, D,) be a hypoelliptic differential operator of type pu with constant
coefficients. Let 2 be an open subset of the half space R';':l with plane piece
of boundary  contained in R}. Let Q,(D, D),,Q,D, D) be p partial
differential operators with constant coefficients and consider the boundary
value problem:

€D)] P(D, D)u=f in Q

Q.(D, D)u|, =g, 1=v<pu
Hérmander [4] gave a necessary and sufficient condition, based on the variety
of zeros of the characteristic function of the boundary problem, in order that
all solutions of (1) shall belong to C*° whenever the initial data belong to
such class (called hypoelliptic boundary value problem). In this paper we give
another characterization of this problem.

For completeness we briefly introduce the hypoelliptic differential operators.
Differential operator P(D) is called hypoelliptic if, for every open set 2 in
R""" and every distribution # in Q, P(D)uc=C™(Q) implies #=C*°(Q). Particu-
larly, algebraic characterizations of hypoelliptic differential operator with
constant coefficients are given by Hormander (5] and Bjorck [1] as follows:

(2) |Im {|—>oo when [{|—co on the surface P({)=0.

(3) for each A>>0 there is a constant B such that |Im {|>Alog(1+|Re|)—B

on the surface P({)=0.

In all that follows we assume that P(D, D)) is hypoelliptic differential
operator with constant coefficients. We shall consider the root of the equation

(€)) P(¢, ©)=0.
where £=R". If = is a real root, it follows from (2) that & belongs to the
compact set in R" defined by P(§, #)=0. That is, if £ is outside a compact
set K (we take a sphere) in R", (4) has no real root. Since the roots are
continuous function of & ([3], p239), in each component of the complement of
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K the number of roots with positive imaginary part is constant. We shall
define that P(D, D)) is of determined type p if the number of zeros with
positive imaginary part is g for all § in the complement of K. When #>1 all
hypoelliptic differential operator with constant coefficients are thus of deter-
mined type.

2. Hypoelliptic boundary problems

Let P(D, D,) be hypoelliptic differential operator of degree % and of deter-
mined type g. We shall denote by o the set of all {&C" such that the equa-
tion.

(5) P, ©)=0
has exactly p roots with positive imaginary part and none of that is real.
Obviously & is open in C" and by hypothesis a real £ is in & if £ belongs to
a suitable neighborhood of infinity. We shall estimate the size of % more
precisely.

LEMMA 1. Suppose that P(D, D,) is hypoelliptic and of determined type p.
Then, given any number A>0, there is @ number B such that of contains all
satisfying

(6) [Im £| <A log(1+|Re {|)—B.

PROOF. Taking the same B in (3), we note that if = is real and (6) is

fulfilled, we have
Im(Z, #)|=|Im {| <A log(1+|Re {|)—B<A log(1+|Re({, 7)|)-B

which implies P({, )70 in virtue of (3), Thus (5) has no real root if (6) is
valid and hence the number of roots of (5) with positive imaginary part is
constant in each components of the set defined by (6). Now each components
of this set contains real points with arbitrarily large absolute values which
proves the lemma.

When (&%, we denote by z,({),,7,({) the zeros of (5) with positive
imaginary part and set .

K= 11 =5,

and
N deL(Q,(C. ‘l'k({))lgk.lgﬂ

The function C({) is called the characteristic function of the boundary problem
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(1). C(Q) is defined even in the case of repeated roots ([4]. p231).
Our main result is to prove the following theorem

THEOREM. Let P(D, D,) be hypoelliptic and of determined type pn, Then the
Sfollowing are equivalent;

(a) The boundary value problem (1) is hypoelliptic.

(&) |Im {|—co if |{|—oo in & satisfying C(L)=0.

(¢) Given any number A there is @ number B such that [=C", |Im {|<<A and
|Re | =B implies {=A and C(L)#0.

(d) Given any number A>0 there is a number B such that |Im {| <A log (1+
|Re {|)— B implies {=s and C({)#0 for {&C" with |Re {|=>1.

PROOF. In [4] and [1] the equivalence of (a), (b) and (c) are given.
Obviously (d) implies (c). It remains to show that (a) implies (d). We may
assume that 2 is bounded ([4], p250). By 2" we shall denote a domain whose
closure is contained in 2w but not in Q2. For the proof we need the following
lemma which is a slight modification of lemma 4.1 [4]. We give a sketch of
the proof just for completeness.

LEMMA 2. Under the assumptions of the theorem, given each integer j, there
is a constant C depending on j such that

(8) Y sup| D"x(x)|<<C T sup|D"u(x)|
la|<k+] =2 la| <k z=0

Jor all uECk(QUcu) satisfying (1) with zero initial data, where k denote the
maximum of orders of P(D, D)) and Q,(D, D), 1=v="p.

SKETCH OF THE PROOF. In lemma 4.1 [4] we denote by V the space of
functions »=C*"1(@") with bounded derivative up to order k+j and the norm
defined by

Y sup|Do(x)].
la|<k+j x=Q

The proof goes exactly the same in lemma 4.1 [4].
Consider the homogeneous boundary problem
(9 P(D, DDu=0 in Q
Q,(D. D)u| =0, 1<v<pu.

Applying the inequality (8) to “exponential solutions” of the boundary problem
(9), that is, solutions of the form

u(x, 1) :e'- - c:\v(a‘)
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where # is a function of a real variable. From the identity P(D, D)u=
e P8P, D)u(Du satisties (9) if and only if

(10) P, DYu()=0 and

(11) Q& DPv)(0)=0, 1<v=p.

Assume {=%"and C({)=0. Then we can find a nontrivial function »(2) satis-
fying (11) and

(12) k(D v(t)=0,
which satisfies (10), since kc(r) is a factor of P({, =).

Differentiation of an exponential solution with respect to a boundary variable

X 1=<j<In, is equivalent to multiplying by C,-- Thus it follows from (8) that

(13) (S5 £ suplD%Cx, 1)
i=1 lal<k @
<C ¥ sup|D%ul(xt)|
la| <k Q
for the exponential solution #(x, £)=¢' “* “"u(t). Now Du(x,t)=e' " :‘_;-vam’
where ,(#) is also a solution of (9). Denoting by H the supremum of |x|
when (x, ¢) =2 for some {>0, we have
e HIm L) f<n E M8 (4, 1) <.

Hence (13) gives

n ¥
1y <c I &l
(14) (El 11D la?:gsal,plva(t)lf(«‘e |a|Eg¢53plv“(m'

Now let @ be a positive number such that any f between 0 and ¢ has an
r&R" with (x, 1) Q" and let b be an upper bound of ¢ with (x, #) €Q for
some x&=R".

Then it follows from (14) that

a5 (S 15 T sup loO1<CP™ s sup g (01,

=1 la|<k 0<t<a la| <k 0<t<b

We now use the fact that all #, are solutions of the equation (9) and that the
zero of k() has non-negative imaginary part, it follows from theorem 1.4
([4], p248) that

b \r—1
DI<r— 3
(16) R ALXOIE(C- ) 15U, 0D
for some r depending on g Combining (20) and (21) and noting that 2,70 we

get

an IRe Z|7<Ce
Taking logarithm in both side

2H |Im [|
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7 log|Re £|<logC+2H |Im ]|,
Since log(1+|Re ¢|)<1+log|Re | for |Re {|>1, we have
7 log(1+|Re {D<C+j+2H|Im {|,
that is,

(18) |Im {.’IEfzﬁ—log(l-HRe c[)—%f—

for {=%" and C({)=0. Since j is arbitrary, (18) proves our claim.

REMARK. Condition (d) gives more precise geometric picture for the location
of the zeros of the characteristic function C({) of the hypoelliptic boundary
value problem than so does (b) or (c).
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