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SUBMANIFOLDS WITH TOTALLY UMBILICAL GAUSS IMAGE
IMMERSED IN A EUCLIDEAN SPACE

By Jong Joo Kim

1. Introduection

Since the classical Gauss map has been introduced by Gauss in order to define
the Gauss curvature, it has become one of the fundamental tools in the study
of submanifolds. For a submanifold M of dimension # in a Euclidean m-space
E™ of higher codimension, the Gauss map is defined as the mapping I" : M—
G(n, m-n) which maps a point p in M into the n-dimensional linear subspace
of E™ which is obtained by parallel displacement of the tangent space T M
of M at p, where G(n, m-n) denotes the Grassmann manifold consisting of
n-dimensional linear subspaces of E™. It is well known that the Grassmann
manifold G(n, m-n) admits a standard Riemannian metric § which makes G(n,
m-n) into & symmetric space.

Throughout this paper we consider only submanifolds of E™ whose Gauss
maps are regular.

Let G denote the metric on M induced from § via the Gauss map. Then M
is said to have fotally wumbilical (resp. lotally geodesic) Gauss image if the
image I'(M) of (M, G) under [I' is totally umbilical (resp. totally geodesic)
in (G(n, m-n), ). One fundamental problem concerning the Gauss map is to
classify submanifolds of E™ whose Gauss images are totally umbilical. Recently
B.Y. Chen and S. Yamaguchi have solved this problem completely for surfaces
in E™ and studied submanifolds of E™ with totally geodesic Gauss image [4],
(51, [6].

In this paper we shall study submanifolds of E™ with totally umbilical Gauss
image and especially isotropic immersions with totally geodesic Gauss image.

In §2, we first recall structure equations for submanifolds in a Euclidean
m-space E™. In §3, we also recall definitions of Grassmann manifolds and
Gauss map, and derive some fundamental formulas for Gauss map. §4 is
devoted to classify submanifolds of dimension higher than 2 in E™ whose Gauss

maps are conformal.



16 Jong Joo Kim
In §5, we study submanifolds with totally geodesic Gauss image.

2. Preliminaries

m

Let M be a submanifold in a Euclidean m-space E” with the induced metric
g on M. Denote by <, > the scalar product in E”. Let V and V be the con-
nections on M and E”, respectively. Then the second fundamental form k& of
the immersion in given by

@1 wx, )=V, y-v,y,
where X and Y are vector fields tangent to M. For a vector field £ normal
to M, we put

(2.2) Vy=4.X+Dy¢, )
where-A.X and Dy denote the tangential and normal component of V&£,
respectively. It is clear that (4.X, Y)=(X, Y), &

For the second fundamental form &, the covariant differentiation 'V with
respect to the connection in TMET*M is defined by

(2.3) CVgh) (Y, Z2)=Dy(h(Y, Z))-h(VyY, Z)—h(Y, VyZ).

Let K and K” denote the curvature tensors associated with V and D, respec-
tively. Then the equations of Gauss, Codazzi, and Ricci are given respectively
by

(2.4) KXY :iZW)=WXW), h(Y,Z2)—-h(X,2Z), k(Y ,W)),

(2.5) CVyh) (¥,2) =(Vyh) (X,2),

(2.6) K°(X,Y 1 £, m)=(4, A)X.Y)
for vector fields X,Y,Z,W tangent to M and £, 7 normal to M.

If we define the second covariant derivative of & by

@7 CVe/'Vil)(Y.Z)=Dy((Vyt)Y,Z)— (Vi) (Vy Y, Z) = CV b XY,V Z)

= ('VW xWX,.2Z),
then we have
(2.8) V' Vild)(V, Z)=(CVy'V b)Y, Z)= KP(W, X)(h(Y, 2))
—h(K(WW,X)Y,Z)-h(Y,K(W,X)Z).

For the second fundamental form k the vector #(X, X) is called a normal
curvalure vector in the direction of a unit vector X. If every normal curvature
vector has the same length for any unit vector X at P, then the immersion is
said to be fsoftropic at P. If the immersion is isotropic at any point on M,
namely, the length of a normal curvature vector depends only on the initial
point, then the immersion is said to be isotropic. The immersion is isotropic
at a point P if and only if the second fundamental form & satisfies
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(2.9 Cilh(X), X5), h(Xs Y))=22CH(X;, X XXs ¥
for a scalar 4, where X;(=1,2,3) and Y are unit tangent vectors at P and
C; denotes the cyclic sum with respect to vectors X, X, X, The condition
is equivalent to

(2.10) h(X, X)), R(X,Y)>=0
for any orthonormal vectors X and ¥ at P [13].

3. Grassmann maniford G(n, m-n) and the Gauss map

In this section we shall derive some fundamental formulars for the Gauss
map. We follow closely that given by Chen and Yamaguchi [4].

Let G(n, m-n) be the Grassmann manifold consisting of #-dimensional linear
subspaces of E™ endowed with the standard metric . Let I[, be any given
point in G(#,m-n). We fix an orthonormal basis (f;, f), i=1,-,nix=n+1,
o,m, of E" such that f; lie in T, Let IT be a point in a suitable neighbor-
hood U of TT, and (e;, e,) be an orthonormal frame such that ¢; lie in TI.
We put

3.1) e, =328, it 8,1y e, =308 fi+ 3¢, f,

hi, B l=1 - nix,y,2=n+1, -, m

Though the frame (f;, f,) is fixed, we can take a frame (¢, e) in such a
way that (see, e.g., [10])

(3.2) lep [pp={e; [ en fR=(e, fp, eIlp=f; e(Ilp)=Ff,

If U is a sufficiently small neighborhood of T[T, the z(m-n) numbers E,.x can
be used as local coordinates on U.

Let I[(£) be a point of U whose local coordinates are E,-; and [[(§+d€) a
point whose local coordinates are §; +d§;. Then the distance ds between [[(§)
and [[(§-+d€) is given by [10]

(3.3) F=ds’=320de;, e,
1,z
and the corresponding Christoffel symbols of & satis{y
(3.4) | o [=0at £,=0.
lix jy

Let M be an n-dimensional submanifold in E™. For each point P in M, the
tangent space T pM can be taken, after a suitable parallel displacement, as a
point I'(P) of G(n,m-n). This mapping I : M—G(n,m-n) is called the Gauss
map of M into G(n, m-n).

For each point PEM, we take an orthonormal frame (e;, e,) of E™ such shat
e,=TpM. We put
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(3.5) de..=w;'°ej+w§ex. w{z—w},
where, here and in the sequel, we use the Eienstein convention on summa-
tions. Let ' be the dual frame of ¢'. Then we have

(3.6) wi=hjw’, hi=(he, e, e
From (3.3), (3.5) and (3.6), it follows that the metric G on M induced from
(G(n,m-n), g) is given by

3.7 G= E(zaff: E‘h,-ihk'}wiwj .

Let (x) be a local coordinate system on a suitable neighborhood V of a
given point 0=M given by x'=0. We take a fixed orthonormal frame (fp £
at 0 such that f; lie in TyM. For any point P in V with local coordinates
(x") we choose (e;, e,) such that e; lie in T',M satisfying the condition (3.2).
Let §;,=<e;, f>. Then Eix(xj) are local coordinates of I"'(P) in G(n,m-n). We
put X i:a/ax" and e,-=).:‘ﬁf:X j Then we have

3.8 08;,/05" = (V, BIXX . FO+BKR(X, XD, f
where V,8i=agi/ax*+ [} 6 and Vg X,={§/} X, Let X;=I'X;. We have
&,
. ix U
3.9 =gl

Denote by k the second fundamental form of the Gauss image. I'(M) in
G(n, m-n). If we denote by V and V® the connections of (G(n, m-n), g) and
(I'tM), G), respectively, it is clear that

WX, X)=V;X,~I'«(V5X).
Thus we have

Ty +{ iz ) %,y O [ _]G 7 kz }_g_

G oo’ Y B 7t gt |06,
where V§ X,= {jh;'} X)- At 0 with 2'=0, <X, f)>=0 and consequently (§,)
=0.

Therefore (3.4) and (3.8) imply

(3.1 k(X X,.):[

kB2 ) _ Fix !
(3.11) [[}' ZhX]DPO' (—E‘;k )0—‘(19’.)0 (h(X*- XJ)n fI>U'

On the other hand by a direct computation, we also have (V,,S’;—)U:O (see,
e.g., [11]). Thus from (3.8), (3.10) and (3.11), we may obtain the following
formula for the second fundamental form of the Gauss image:

LEMMA. 3.1 (Chen and Yamaguchi [4]). The second fundamental form h of
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the Gauss image at O=M salisfies
(3.12) WX, X)=32@B, (VX XMV Xy Xp)
~h(VEX, X)), f=>°T€,,_'

4. Submanifolds with conformal Gauss maps

Let M be a submanifold of E™. It is said that the Gauss map of M is con-
Sformal (respectively, homothelic) if G=e2"g for some function p (respectively,
for some constant g) on M.

Assume that I' is conformal with G=e¢” g. Denoting by GJ-,- and &ji local
components of G and g, respectively, with respect to the local coordinates
(") in M, we have from (3.7)

(4.1) G;i=hjihi=e"g;;
where kj; denote the second fundamental tensors of M in E™. Applying the
covariant derivative V, to (4.1), we have

(4.2) VDRGSRV ) =26%0,8 10
where, here and in the sequel we put p,,=6p/ax". Transvecting (4.2) with
gﬁ. we obtain

(4.3) Vb Dhi=nep,
where (gji)z(gj,-)'l. Also transvecting (4.2) with g“ and taking account of
the equation (2.5) of codazzi for M in E™, we find

(4.4) ) SAVIORG 1,3V ) =267,
where B*=g”'h ,’,‘ Therefore (4.3) with (4.4) implies
(4.5) (VO =(2—-n)e*p,.

If the Gauss map I" is harmonic, namely, V,,h’=0 (see, Corollary 1 of [14]),
(4.5) reduces to (n-2)eg 0;=0. The last equation gives

LEMMA 4.1. If the Gauss map I' is conformal and harmonic, then n=2 or I’
is homothetic.

From now on, we put

. h_[ R \C_[ R
(4.8) L P P
Then, the conformality of the Gauss map I implies (see. p23 of [1])
4.7 W =00 +0,0%—g;0",

where o"=g"0,.
Denoting by k;{" the local components of the second fundamental tensor of
I'(M) in G(n,m-n), we have from (3.12)



20 Jong Joo Kim

4.8 hji*=Bo(V iy =W k),
which together with (4.7) implies

h j':'x’:ﬂ;(v jhi:—ﬂ jh.-':_pikj: tg jipsks:)°

From now on we assume that the Gauss image I'(M) is totally geodesic in
G(n,m-n), i.e., that the second fundamental from %k of I'M) in G(r, m-n)
vanishes identically. Then the last equation reduces to

(4.9) Vih ;=04 i+0h— 8,0 hy
since the matrix (8,) is non-singular. Combining this with the equation (2.5)
of codazzi, we find

(4.10) o4h J,-f_.— ol & J-p’k,-i +8;:0"hys=0.
Transvecting (4.10) with g’* we have

(4.11) o =2—n)o'h.
If »>2, then we have

(4.12) Ohg=p '/ (2—n)
Transvecting (4.10) with pf gives

ol = 0,0°hj5+0 j.‘?shki =& kj-os-arks:'

which and (4.12) imply

(4.13) Idol%h 3= 52 2og0,~ ol g4, I
Let N,= [PEM|dp#0 at P|. Then (4.13) shows that (X, Y) is contained in
the linear subspace Span (H] spanned by the mean curvature vector H with
local components A* on N,. Since the Gauss map is assumed to be regular, h#0
at any point P&EM. Thus we have the following.

LEMMA 4.2. Let M be an n-dimensional (n>2) submanifold of E". If the
Gauss map is conformal and the Gauss image is totally geodesic, thenm M=
N,UN, such that (1) N, is open in M, (2) dp:O on N, and (3) dim(Imh)=1
on N,.

By using Lemma 4.2, we shall prove the following.

THEOREM 4.3. Let M be an n-dimensional (n>2) submanifold of E™ with
totally geodesic Gauss image. If the Gauss map is conformal, then either

(1) the Gauss map is homothelic and the second fundamental form of M in
E™ is parallel or

(2) M is a hypersurface in an affine (n+1)-subspace E""' of E" and M is
conformally flat.
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PROOF. Let N be a component of N,= [PEMIdp-/-O at P}. Then by means
of Lemma 4.2 there exists an orthonormal local frame {E, -, E_,E, . E,}
such that E, -, E, are tangent to M and the second fundamental tensors
A=Ap, x=nt+l,m take the following forms;

0\

‘ |
(4.14) A= dg. ): Ay g=sie= 4,,=0.
.a

0
n

For each fixed {,7i=1,2, ---,#, equations (2.3) and (4.14) imply
Dp(@;E, )=Dgh(E; Ep=CVgh)E; ED+2h(NgE; E),
which together with (2.5) gives
Dg(a;E, D=CVgh)(E;, ED+2h(NgE; E))
=Dph(E;, EQ—h(NgE; ED-ME; VpED+2h(VpE,; E)

for any j,j=1,2, -, n. Therefore, for each fixed #, i=1,2,---,7# and each j#i,
equation (4.14) and the last equation yield

(4.15) DE,(a,En-#l)zzk(VE;Ej' Ej)—h(VEjE,-, E=h(E;, VE‘E]-).
and consequently

(4.16) (Dph(E; E), E, =0, k=23, m—n.

Since the Gauss map is assumed to be regular, det(4,, ,)70. So, (4.15) also
implies that

<DE,-E'!+1' E, =0, k=2,-,m—n,
from which and (4.16) it follows that
Dyh(Y, Z)EImh

for any vector fields X,Y,Z tangent to M. Thus the first normal space Im#h
is parallel in the normal bundle and moreover; it is l-dimensional by means
of Lemma 4.2. Hence, by a theorem due to Erbacher [7], N lies in an (n+1)-
dimensional subspace E"*' of E™.

On the other hand, by (4.14) conformality of the Gauss map, we have

ai=-=a>#0

on N. So we may assume that

(4.17) a,=--=a,=a, a8, ="a,=—a

r+1 n
for some positive function ¢ on N. The mean curvature vector H is then gives
by

(4.18) H=Q2r-n)E, ‘

By the way, (4.12) implies that the vector dpg associated with dp is an
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eigenvector of A,,l.,l with eigenvalue 1*2%,‘-IIH . Thus by using (4.17) and
(4.18) we find r=1 or n—1. Therefore, the second fundamental form % takes
the following form

(4.19) h=lag—20uQ@u E,. , on N
for some nonzero function & and some 1-form g. Thus N is conformally flat
if n>3.

From now on we prove the conformal flatness of N is the case of n=3.

Differentiating covariantly both side of (2.4) and making use of

Vihji=Wih,5,
we can easily find
ViKjin=W K jin WK prins
from which by contraction
ViK =W ;K py W K gy

substituting (4.7) in the last equation we have

(4.20) ViK =20, K+ 04K 14— 8180 K i+ 0" K iy
A direct calculation by using (4.12) gives
4.20) 0K =300 iy —highi) =, 5 (0,(K 4 Gy) — 0,(K y + Gy,

where we have used

- x
which is a direct consequence of (2.4) and (4.1). Moreover, transvecting
(4.22) with ¢’ and taking account of Gj,:engj,-. we have

(4.28) K=~ [z 1HI +¢* o,
Combining (4.20) with (4.21) and (4.23), we obtain
(4.24) VK ji= 2pkKﬂ+pJKh+[ 5 IHI" +e“"}ghp,

= ,,—_2" (0,(K j,+G jj) — 0 (Kt Gl
On the other hand, differentiating covariantly both side of (4.22) with
Gj,:e'“"”gj,-. we can see that
(4.25) VkK =20,K j;+0;(K i+ Gk,)-i- 2 ;s &3;0;
where we have used

(4.26) . Vi =p 0"
which is direct consequence of (4.9). Comparing (4.24) with (4.25), we have
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I

Transvecting (4.27) with g* and using (4.23), we can esily verify

[egp— ( 12)'2 HHHz}p]-:O.
=

which implies

(4.28) &=—1 _1HI? on N.
(n—2)"

’I‘ransvecting again (4.27) with pi, we obtain

- B ST otk _n—3 2 _
L1l o+ (e Ll Yor0;~ =3 1d01°6,,=o0,
or equivalently, by using (4.28)
(4.29) Idpl°K j+2(n—2)e* 040, (n—3)|dpl °G ;=0

It follows from (4.25) that
VK = VjK 1 = 0K ji— 0K i+ Pijf —0,G
from which, taking account of (4.27),
(4.30) ViK;i=V K =(—4)(0,G;;—p;Gy;) on N.
On the other hand, equations (4.12) and (4.13) yield

ldel® Ik 1P ——2— 15|} =
i)

i

”_
Thus
K=o K~ 11 =10 7P = =D = e
g J1 Ji ("_2)
on N and consequently
2{(n— 2) nj
v SR8l 8 ia#* [
K= (rz—2)
with the help of (4.26). Therefore, it follows from (4.28) that
2
(4.3D) “T,,l_‘ﬁ“ (g;iVik—guV k)*_(n—_z_)'l_ (046 i —0,Gyi)s
from which and (4.30), if #=3,
Vil i =V il _ m(gﬂv K—gy;V;K)=0.

Hence N is conformally flat when »=3.

If int(N,)=¢, then, by the regularity of Gauss map and the discussi
above, the statement (2) holds.

Now, we assume that int(N,)f¢. Then, by the Lemma 4.2, the Gauss m
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is homothetic on int(N,), in particular, the Gauss map is affine on int(N,).
Therefore Vé=V and consequently "VA=0 on int(N,) by (4.9). Hence int(N,)
is locally symmetric. If dim(Imk)=1 on int(N,), dim(Imkh)=1 on M. Thus,
by the regularity of Gauss map and codazzi's, M is a hypersurface of an affine
(n+1)-subspace E* of E™ In this case, a similar argument as before shows
that the statement (2) holds.

If dim(Imk)>1 on some point of int(N,), some component V of int(N,) lies
fully in an affine (n+p)-subspace E""” of E™ with p>1. Since ‘VA=0 on
int(N,). V is a locally symmetric space immersed in E""? in a standard fashion
(see Ferus [8]). From this we may conclude that N,=M and the theorem
follows.

REMARK. The proof of Theorem 4.3 for #>3 is given by Chen and Yama-
guchi [5].

5. Submanifolds with totally umbilical Gauss image

Let M be a submanifold of E™ whose Gauss image is totally umbilical. Then,
by means of Lemma 3.1, we have

(5.1) G1Cl=BICY ol W D)

for some normal bundle valued 1-forms Ci. Contracting (5.1) with 5% and
using “}:'ﬂ;ﬁf:g", we obtain

(5.2) G ;D™ =V hi* W™,
or equivalently
(5.2) Gj,'D:;:ijf::_W;ik:m'

where "= g’"jhfj and we put IZ‘CfﬁT=D"". Di=g D",

In addition, we assume that the Gauss map is conformal with G:eg"g. Then

as already shown in the previous section, we have
WJ-,-thjE:-’+pi()‘?—gﬁph.

Therefore, (5.2)" reduces to

(5.3) Vihji=e"g \Di+phi+ohii— g0,
which and the equation (2.5) if codazzi give

(32'0Df —0'h,)g, i (32'01); = ﬂr"r;)g kit O jki':' —o;hy =0

Transvecting this with g‘”, we find

(5.4) (n—1) (& Di—g'h3)+0"h5— 00" =0.

r
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Hence, if the Gauss map is homothetic, it follows that

Di=0
on M, which and (5.3) yield that the submanifold M is a parallel submanifold
in E”, i.e., that the second fundamental form & of M in E™ is parallel. Thus
we have

LEMMA 5.1. If the Gauss image I'(M) is totally umbilical and if I' is
homothetic, then M is a parallel submanifold in E™.

Combining Lemma 4.1 with Lemma 5.1, we have

THEOREM 5.2. If the Gauss image I'(M) is totally umbilical, and if I' is
conformal and harmonic, then M is a parallel submanifold in E", provided

dimM>2,
On the other hand, substituting (5.4) in (5.3), we have
’ 1
%.3) kaj:": pkhj§+pjhk"§—-ﬁgkj(prh,f—p,-hx).

Substituting (5.3)" in (4.2) and using (4.1), we obtain
(n—2)egp(pjgk,-+p,-gjk)+gh-p'kj’§hl+g”p'h,-fhx:0.
from which, transvecting with gji.
(5.5) (n—2)¢"0,+ o' hih =0
Using this equatin, we shall prove
TFHEOREM 5.3. Let M be a submanifold of E" whose Gauss image I'(M) is

totally umbilical and let I" be conformal. If the i{mmersion is isolropic, then I’
is homothetic and M is a parallel submanifold in E”, provided dimM=n>>3.

PROOF. Let the immersion be isotropic. Then as already mentioned in section
2, the second fundamental tensors of M in E™ satisfy (2.9) for a continuous
function 2, that is,

Byt et Bl g IR = 12(8’&;‘8’;1.‘5'3' i1 int & i)
Transvecting this equation with g'-". we have

(5.6) bk, = ((n+2)2°—26%) g,

from which, substituting in (5.5),

((n+2)22+(n—4)e™) 0, =0.
If n>3, since the Gauss map I' is assumed to be regular, ,=0 which means
that /" is homothetic. Therefore our assertion is followed by Lemma 5. 1.
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