Kyungpook Math. J. Volume 27, Number 1 June, 1987

MINIMAL P-SPACES

By S. P. Arya and M. P. Bhamini

Abstract: Minimal s-Urysohn and minimal s-regular spaces are studied. An s-Urysohn (respectively, s-regular) space (X, \mathcal{T}) is said to be minimal s-Urysohn (respectively, minimal s-regular) if for no topology \mathcal{T}' on X which is strictly weaker than \mathcal{T} , (X, \mathcal{T}') is s-Urysohn (respectively s-regular). Several characterizations and other related properties of these classes of spaces have been obtained.

The present paper is a study of minimal *P*-spaces where *P* refers to the property of being an *s*-Urysohn space or an *s*-regular space. A *P*-space (X, \mathscr{T}) is said to be minimal *P* if for no topology \mathscr{T}' on *X* such that \mathscr{T}' is strictly weaker than \mathscr{T} , (X, \mathscr{T}') has the property *P*. A space *X* is said to be *s*-Urysohn [2] if for any two distinct points *x* and *y* of *X* there exist semi-open sets *U* and *V* containing *x* and *y* respectively such that $clU \cap clV = \phi$, where clU denotes the closure of *U*. A space *X* is said to be *s*-regular [6] if for any point *x* and a closed set *F* not containing *x* there exist disjoint semi-open sets *U* and *F* such that $x \in U$ and $F \subseteq V$. Throughout the paper the spaces are assumed to be Hausdorff.

1. Minimal s-Urysohn spaces

DEFINITIONS 1.1. A set $A \subseteq X$ is said to be *semi-open* [5] if there exists an open set $U \subseteq X$ such that $U \subseteq A \subseteq clU$. The complement of a semi-open set is said to be *semi-closed* [3]. The *semi-closure* [3] of a set A is the intersection of all semi-closed sets containing A.

DEFINITION 1.2. An s-Urysohn space (X, \mathcal{F}) is said to be minimal s-Urysohn if for no topology \mathcal{F}' on X such that \mathcal{F}' is strictly weaker than \mathcal{F} , (X, \mathcal{F}') is s-Urysohn.

DEFINITION 1.3. A filter base \mathscr{F} is said to be an *s*-Urysohn filter base if whenever x is not an adherent point of \mathscr{F} , there exists a semi-open set Ucontaining x such that $clU \cap clF = \phi$ for some $F \in \mathscr{F}$. THEOREM 1.4. An s-Urysohn space (X, \mathcal{T}) is minimal s-Urysohn if and only if every open s-Urysohn filter base with unique adherent point converges.

PROOF. Let (X, \mathcal{F}) be minimal *s*-Urysohn. Let \mathscr{B} be an open *s*-Urysohn filter base with unique adherent point *p* to which it does not converge. Let $\mathscr{U}(x)$ be the family of all open sets containing *x*. Let $\mathscr{U}'(x)$ be the family defined as:

$$\mathscr{U}'(x) = \begin{cases} U \text{ where } U \Subset \mathscr{U}(x) \text{ and } x \neq p \\ U \cup B \text{ where } U \Subset \mathscr{U}(x), B \Subset \mathscr{B} \text{ and } x = p \end{cases}$$

Let \mathscr{T}' be the topology generated by the neighbourhood base $\mathscr{U}'(x)$. Since \mathscr{B} does not converge to p, \mathscr{T}' is strictly weaker than \mathscr{T} . We shall prove that (X, \mathscr{T}') is s-Urysohn. For two distinct points x and y other than p, there exist disjoint semi-open sets U and V containing x and y respectively such that $\mathscr{T}'-\operatorname{cl} U \cap \mathscr{T}'-\operatorname{cl} V = \phi$. Now suppose that one of the points coincides with p. Let y=p. Since x is not an adherent point of the filter base \mathscr{B} , There exists an open set V containing x such that $V \cap B = \phi$ for some $B \in \mathscr{B}$. Since B is open, $\mathscr{T}-\operatorname{cl} V \cap B = \phi$. Also, (X, \mathscr{T}) being Hausdorff, there exist open sets V_1 and U containing x and y respectively such that $V_1 \cap U = \phi$. Again, $\mathscr{T}-\operatorname{cl} V_1 \cap U = \phi$. Now $V \cap V_1$ is an open set containing x and $\mathscr{T}-\operatorname{cl}(V \cap V_1) \cap (B \cup U) = \phi$. $B \cup U$ being a \mathscr{T}' -open set, $\mathscr{T}'-\operatorname{cl}(V \cap V_1) \cap (B \cup U) = \phi$. But $\mathscr{T}'-\operatorname{cl}(V \cap V_1)$ is \mathscr{T}' -open. Therefore $\mathscr{T}'-\operatorname{cl}(V \cap V_1) \cap \mathscr{T}'-\operatorname{cl}(B \cup U) = \phi$ and $y \in B \cup U$. Thus (X, \mathscr{T}') is s-Urysohn. In other words, (X, \mathscr{T}) is not minimal s-Urysohn. This is a contradiction. Therefore the open s-Urysohn filter base \mathscr{B} converges to its unique adherent point p.

Conversely, let (X, \mathcal{T}) be an *s*-Urysohn space satisfying the condition that every open *s*-Urysohn filter base with unique adherent point converges. If possible let \mathcal{T}' be an *s*-Urysohn topology on *X* which is weaker than \mathcal{T} . Let $\mathcal{U}'(x)$ be the family of open sets containing *x* in (X, \mathcal{T}') . \mathcal{T}' being Hausdorff, $\mathcal{U}'(x)$ is an *s*-Urysohn filter base on (X, \mathcal{T}') with unique adherent point *x*. \mathcal{T}' being weaker than \mathcal{T} , $\mathcal{U}'(x)$ is an open *s*-Urysohn filter base on (X, \mathcal{T}) with unique adherent point and hence in view of the assumption, $\mathcal{U}'(x)$ converges to *x* in (X, \mathcal{T}) . Therefore each \mathcal{T} -neighbourhood of *x* is a \mathcal{T}' neighbourhood. Thus $\mathcal{T} = \mathcal{T}'$ and so (X, \mathcal{T}) is minimal *s*-Urysohn.

THEOREM 1.5. Let (X, \mathcal{T}) be an s-Urysohn space such that every open s-Urysohn filter base with unique adherent point converges. Then every open s-

Urysohn filter base has non-empty adherence.

PROOF. Let (X, \mathscr{T}) be an s-Urysohn space such that every open s-Urysohn filter base with unique adherent point converges. If possible, let \mathscr{B} be an open s-Urysohn filter base without any adherent point. Let $p \in X$. Let \mathscr{U} be the family of all open sets containing p. Let $\mathscr{C} = \{B \cup U \text{ where } B \in \mathscr{B} \text{ and } U \in \mathscr{U}\}$. Since X is Hausdorff and \mathscr{B} does not have an adherent point, \mathscr{C} is an s-Urysohn filter base with unique adherent point p. But it does not converge to p. This is a contradiction. Hence the proof.

DEFINITION 1.6 [1]. An s-Urysohn space is said to be s-Urysohn-closed if it is closed in every s-Urysohn space in which it can be embedded.

COROLLARY 1.7. A minimal s-Urysohn space is s-Urysohn-closed.

PROOF. Immediate, in view of Theorems 1.4 and 1.5 above and Theorem 1.4 of [1].

THEOREM 1.8. Every clopen subset of a minimal s-Urysohn space is minimal s-Urysohn.

PROOF. Let X be minimal s-Urysohn and Y be a clopen subset of X. Y being open, is s-Urysohn [2]. Let \mathscr{B} be an open s-Urysohn filter base on Y. If possible let \mathscr{B} have a unique adherent point $p \in Y$ to which it does not converge. Now \mathscr{B} is an s-Urysohn filter base on X. For, suppose x is not an adherent point of \mathscr{B} in X. Suppose that every semi-open subset V of X containing x is such that $clV \cap clB \neq \phi$ for every $B \in \mathscr{B}$. $V \cap Y$ is a semi-open subset of X [3] and hence of Y [5]. Since Y is a semi-closed subset of X, $x \in Y$. Thus $Y \cap V$ is a semi-open subset of Y containing x and \mathscr{F}_Y -cl $(V \cap Y) \cap \mathscr{F}_Y$ -cl $B \neq \phi$ for every $B \in \mathscr{B}$. Also Y being open, every semi-open subset of Y is of the form $V \cap Y$ where V is a semi-open subset of X [4]. Hence every semi-open subset U of Y containing x is such that \mathscr{F}_Y -cl $U \cap \mathscr{F}_Y$ -cl $B \neq \phi$ for every $B \in \mathscr{B}$. This is a contradiction to the fact that \mathscr{B} is an s-Urysohn filter base on Y. Also Y being clopen, p is the unique adherent point of \mathscr{B} in X. So in view of the given condition, \mathscr{B} converges to p in X and hence in Y. Thus Y is a minimal s-Urysohn.

THEOREM 1.9. If $X = \prod_{\lambda \in \Lambda} X_{\lambda}$ and if there does not exist an s-Urysohn filter base on X with unique adherent point, then for at least one λ , X_{λ} does not have an s-Urysohn filter base with unique adherent point. PROOF. Suppose for each $\lambda \in \Lambda$ there exists an s-Urysohn filter base \mathscr{F}_{λ} on X_{λ} with unique adherent point $x_{\lambda} \in X_{\lambda}$. We now claim that $\prod_{\lambda \in \Lambda} \mathscr{F}_{\lambda}$ is an s-Urysohn filter base on X with unique adherent point $(x_{\lambda}) \in X$. To prove that $\prod_{\lambda \in \Lambda} \mathscr{F}_{\lambda}$ is an s-Urysohn filter base, suppose $y = (y_{\lambda})$ is not an adherent point of $\prod_{\lambda \in \Lambda} \mathscr{F}_{\lambda}$. Then y_{λ} is not an adherent point of \mathscr{F}_{λ} for some $\lambda \in \Lambda$. Hence there exists a semi-open set U_{λ} containing y_{λ} such that $\operatorname{cl} U_{\lambda} \cap \operatorname{cl} F_{\lambda} = \phi$ for some $F_{\lambda} \in \mathscr{F}_{\lambda}$. This implies that $P_{\lambda}^{-1}(\operatorname{cl} U^{\lambda}) \cap P_{\lambda}^{-1}(\operatorname{cl} F_{\lambda}) = \phi$. Since P_{λ} is continuous, $\operatorname{cl} P_{\lambda}^{-1}(U_{\lambda}) \cap \operatorname{cl} P_{\lambda}^{-1}(F_{\lambda}) = \phi$. This proves that $\prod_{\lambda \in \Lambda} \mathscr{F}_{\lambda}$ is an s-Urysohn filter base on X since every semi-open subset U of X is of the form $\prod_{\lambda \in \Lambda} V_{\lambda}$ where $V_{\lambda} = X_{\lambda}$ for all but finitely many λ 's and V_{λ} is a semi-open subset of X_{λ} for finitely many λ 's [7]. It is easy to verify that $x = (x_{\lambda})$ is the unique adherent point of $\prod_{\lambda \in \Lambda} \mathscr{F}_{\lambda}$.

COROLLARY 1.10. If $X = \prod_{\lambda \in \Lambda} X_{\lambda}$ is minimal s-Urysohn vacously, then for at least one λ , X_{λ} is minimal s-Urysohn vacously.

THEOREM 1.11. Let every open s-Urysohn filter base on $X \times Y$ with unique adherent point converge and let Y be such that every open s-Urysohn filter base on Y has a unique adherent point. Then every open s-Urysohn filter base on X with unique adherent point converges.

PROOF. Let \mathscr{F} be an open s-Urysohn filter base on X with unique adherent point x. Let \mathscr{P} be an open s-Urysohn filter base on Y with unique adherent point y. Then $\mathscr{F} \times \mathscr{P}$ is an open s-Urysohn filter base on $X \times Y$ with unique adherent point (x, y) in $X \times Y$. In view of the given condition, $\mathscr{F} \times \mathscr{P}$ converges to (x, y). Hence \mathscr{F} converges to x.

COROLLARY 1.12. If $X \times Y$ is minimal s-Urysohn and Y is a space such that every open s-Urysohn filter base on y has unique adherent point, then X is minimal s-Urysohn, provided X is s-Urysohn.

2. Minimal s-regular spaces

DEFINITION 2.1. An s-regular space (X, \mathcal{T}) is said to be minimal s-regular if for no topology \mathcal{T}' on X such that \mathcal{T}' is strictly weaker than \mathcal{T} , (X, \mathcal{T}') is s-regular.

DEFINITION 2.2. A *filter base* is said to be an *s-regular filter base* if it is equivalent to a semi-closed filter base.

LEMMA 2.3 [6]. A space X is s-regular if and only if for every point x and every open set U containing x, there exists a semi-open set V containing x such that $x \subseteq V \subseteq s - clV \subseteq U$.

THEOREM 2.4. An s-regular space is minimal s-regular if and only if every s-regular filter base with unique adherent point converges.

PROOF. Let (X, \mathscr{T}) be an s-regular space which is minimal s-regular and \mathscr{B} be an s-regular filter base with unique adherent point p to which it does not converge. For each $x \in X$, Let $\mathscr{U}(x)$ be the family of open sets containing x. Let us define $\mathscr{U}'(x)$ as:

$$\mathcal{U}'(x) = \begin{cases} U \text{ where } U \in \mathcal{U}(x) \text{ if } x \neq p \\ U \cup clB \text{ where } U \in \mathcal{U}(x) \text{ and } B \in \mathcal{B} \text{ if } x = p. \end{cases}$$

Let \mathcal{T}' be the topology generated by the neighbourhood base $\mathcal{U}'(x)$. Since \mathcal{B} does not converge to p, \mathcal{T}' is strictly weaker than \mathcal{T} . We shall prove that (X, \mathcal{T}') is s-regular. Let $x \in X$ and A be a \mathcal{T}' -open set containing x.

Case 1 Suppose $x \neq p$. Since (X, \mathcal{T}') is Hausdorff, there exists a \mathcal{T}' -open set U_1 containing x and a \mathcal{T}' -open set U_2 containing p such that $U_1 \cap U_2 = \phi$ and $U_1 \subseteq A$. Also since (X, \mathcal{T}) is s-regular, there exists a \mathcal{T} -semi-open set V containing x (and hence a \mathcal{T}' -semi-open set V containing x) such that $x \in V \subseteq \mathcal{T}$ -s-cl $V \subseteq U_1$. Therefore \mathcal{T} -s-cl $V \cap U_2 = \phi$. In other words, there exists a \mathcal{T}' -open set containing p having empty intersection with \mathcal{T} -s-clV. Thus \mathcal{T} -s-clV is \mathcal{T}' -semi-closed. Hence there exists a \mathcal{T}' -semi-open set V such that $x \in V \subseteq \mathcal{T}'$ -s-cl $V \subseteq U_1 \subseteq A$.

Case 11 Let x=p. Hence there exists a $B \in \mathscr{B}$ and a $U \in \mathscr{U}(p)$ such that $p \in U \cup clB \subseteq A$. Since U is a \mathscr{T} -open set containing p there exists a \mathscr{T} -semi-open set V such that $p \in V \subseteq \mathscr{T}$ -sclV $\subseteq U$. Now there exists a \mathscr{T} -open set G such that $G \subseteq V \subseteq \mathscr{T}$ -clG $\subseteq \mathscr{T}'$ -clG, since V is \mathscr{T} -semi-open. If $p \notin G$, this proves that V is a \mathscr{T}' -semi-open set. If $p \in G$, then $G \cup clB \subseteq V \cup clB \subseteq clG \cup clB \subseteq \mathscr{T}$ -cl($G \cup clB$) $\subseteq \mathscr{T}'$ -cl($G \cup clB$). Since $G \cup clB$ is a \mathscr{T}' -open set, this implies that $V \cup clB$ is \mathscr{T}' -semi-open. Thus $p \in V \cup clB \subseteq s$ -clV $\cup clB \subseteq U \cup clB \subseteq A$. We shall prove that s-clV $\cup clB$ is \mathscr{T}' -semi-open set (and hence a \mathscr{T}' -semi-open set) H containing x such that $H \cap (s$ -clV $\cup clB) = \phi$ since (s-clV $\cup clB)$ is \mathscr{T} -semi-open set (and hence a \mathscr{T}' -semi-open set) H containing x such that $H \cap (s$ -clV $\cup clB) = \phi$ since (s-clV $\cup clB)$ is \mathscr{T} -semi-closed. Thus $p \in V \cup clB \subseteq \mathscr{T}'$ -s-cl($V \cup clB$) is \mathscr{T}' -semi-closed. Thus $p \in V \cup clB \subseteq \mathscr{T}'$ -s-cl($V \cup clB$) is \mathscr{T}' -semi-closed. There (x, \mathscr{T}') is s-regular. This contradicts the fact that (X, \mathscr{T}) is minimal s-regular. Therefore \mathscr{B} converges to p.

The converse can be proved as in the proof of Theorem 1.4.

THEOREM 2.5. Let (X, \mathcal{F}) be an s-regular space such that every s-regular filter base with unique adherent point converges. Then every s-regular filter base on X has non-empty adherence.

PROOF. Similar to the proof of Theorem 1.5

DEFINITION 2.6 [1]. An *s*-regular space (X, \mathcal{T}) is said to be *s*-regular-closed if it is closed in every *s*-regular space in which it can be embedded.

COROLLARY 2.7. A minimal s-regular space is s-regular-closed.

PROOF. Immediate, in view of Theorems 2.4 and 2.5 above and Theorem 2.4 of [1].

THEOREM. 2.8. If a subset Y of s-regular space X has the property that every s-regular filter base on Y has non-empty adherence, then Y is a closed subset of X.

PROOF. Suppose Y is not a closed subset of X. Let $p \in ly-y$. Let \mathscr{U} and \mathscr{V} be filter bases consisting of open subsets of X containing p and semi-closures of semi-open subsets of X containing p respectively. Let $\mathscr{B} = \{Y \cap U : U \in \mathscr{U}\}$ and $\mathscr{C} = \{y \cap V : V \in \mathscr{V}\}$. \mathscr{B} and \mathscr{C} are filter bases on Y where \mathscr{C} is a semiclosed filter base. To see that \mathscr{C} is a family of semi-closed subsets of Y, let $V \in \mathscr{V}$. Then there exists a closed subset W of X such that $intW \subseteq V \subseteq W$ [3]. Hence $Y \cap IntW \subseteq Y \cap V \subseteq y \cap W$. Thus $int(y \cap W) \subseteq y \cap V \subseteq y \cap W$ where $y \cap W$ is a closed subset of y. This proves that $y \cap V$ is a semi-closed subset of Y. Since X is s-regular, \mathscr{U} and \mathscr{V} are equivalent in X and so \mathscr{B} and \mathscr{C} are equivalent in Y. In other words \mathscr{B} is an s-regular filter base on y with unique adherent point p and $p \notin Y$. This is a contradiction. Hence y is a closed subset of X.

THEOREM 2.9. Every clopen subset of a minimal s-regular space is minimal s-regular.

PROOF. Let X be minimal s-regular and let Y be a clopen subset of X. Let \mathscr{B} be an s-regular filter base on Y. If possible let \mathscr{B} have a unique adherent point p in Y to which it does not converge. Since Y is clopen, \mathscr{B} is an s-regular filter base on X with unique adherent point p. Hence \mathscr{B} converges to p. But $p \subseteq Y$. So converges in Y. Hence (Y, \mathscr{F}_Y) is minimal s-regular.

32

THEOREM 2.10. If $X = \prod_{\lambda \in \Lambda} X_{\lambda}$ is minimal s-regular then each X_{λ} is minimal s-regular provided each X_{λ} is s-regular.

PROOF. Let $X = \prod_{\lambda \in \Lambda} X_{\lambda}$, with the product topology \mathscr{T} , be minimal *s*-regular. Suppose $(X_{\lambda_0}, \mathscr{T}_{\lambda_0})$ is not minimal *s*-regular for some $\lambda_0 \in \Lambda$. Then there exists an *s*-regular topology \mathscr{F}_{λ_0} on X_{λ_0} strictly weaker than \mathscr{F}_{λ_0} . Consider now the collection $\{(X_{\beta}, \mathscr{T}_{\beta}) : (X_{\beta}, \mathscr{T}_{\beta}) = (X_{\lambda}, \mathscr{T}_{\lambda})$ for $\lambda \neq \lambda_0$ and $(X_{\beta}, \mathscr{T}_{\beta}) = (X_{\lambda}, \mathscr{F}_{\lambda_0})$ if $\lambda = \lambda_0$. Then $X = \prod_{\beta \in \Lambda} X_{\lambda}$ has the product topology \mathscr{T}' which is strictly weaker than \mathscr{T} . Also (X, \mathscr{T}') is *s*-regular since each X_{λ} is *s*-regular [8]. Thus each $(X_{\lambda}, \mathscr{T}_{\lambda})$ is minimal *s*-regular.

REFERENCES

- [1] S.P. Arya and M.P. Bhamini, P-closed spaces, Ind, J. Pure Appl. Math. (to appear).
- [2] S.P. Arya and M.P. Bhamini, Some generalizations of Urysohn spaces, Communicated.
- [3] S.G. Crossley and S.K. Hildebrand, Semi-closure, Texas J. Sci. 22(1971), 99-112.
- [4] S.G. Crossley and S.K. Hildebrand, Semi-topological properties, Fund. Math. 74 (1972), 233-254.
- [5] N. Levine, Semi-open sets and semi-continuity on topological spaces, Amer. Math. Monthly 70(1963), 36-41.
- [6] S. N. Maheshwary and R. Prasad, On s-regular spaces, Glas. Math. 10(1975), 347-350.
- [7] T. Noiri, On semi-continuous mappings, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 54(1973), 210-214.
- [8] T. Noiri, A note on s-regular spaces, Glas. Math. 13(33) (1978), 107-110.

Maitreyi College, (University of Delhi) Netaji Nagar, New Delhi-110023, India. Department of Mathematic-University of Delhi, Delhi-110007, India.