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DISTRIBUTIVE, STANDARD AND NEUTRAL ELEMENTS IN 

THE JOINSEMILATTICE OF CONVEX SUBLATTICES OF A LATTICE 

By Juhani Nieminen 

1. Introduction and basic concepts 

The purposc of lhis papcr is lo gencralizc lhc properties of dislribulivc, 

slandard and nculral idcals of a lattice. A gencralizalion of slandard ideals is 

given by Fried and Schmidt in [IJ , where the concept of a standard convcx 

sublattice is defined and related properties are described. The main difficulty 

in the gcncralization work is thc lack of a suitablc algcbra for dcscribing thc 

convex sublaltices of a lattice. We shall first ’ introduce an algebra for convcx 

sublatticcs of a latticc and thereafter consider distributivc. standard and neutral 

convcx sublatticcs by means of the propertics of thc algebra. 

A X'"b-latticc H = CH , V , ^) is a joinscm ilatticc, where aVb = lub (a , b) , 
the least uppcr bound of a and b, for every two elements a, bE H , and a^b= 

glb(a, bJ, thc grcatest lower bound of a and b, whcn the set Ib (a , 이 of lowcr 

bounds of a and b is nonempty. If lb (a , 이 = Iþ, we put a^b= aVb. Th us lhe 

opcration V behaves like the corresponding operation in a joinsemilattice. i. e 

it is associative and c< a and d < b imply cVd< aVb. Unfortunately, c< a and 

d < b need not imply c^d< a^b , and ^ nccd not bc associative. On the other 

hand , a!\ a = a and a^b=b^ a for a ll a, bE H . As easily seen, every latt ice is 

also a X1ub- lattice. but every joinscmilatticc S I1 ccd Jlot be a ~ub- J att i ce . 

becausc the property lb (a , b) ~얘 in S nccd not irnply the existcncc of an 

element glb (a , b) in S. A X'''b- Iattice H is callcù dist ributive Cmodular) if lhe 

conditions D, and D
2 

(.\[, and ;\,1
2

) below ho[d 

Dj a^CbV c) < Ca^b)V(a Ac) for a ll a, b, cc H; 

D
2 

aV (b ^ c)>(a V b)A (a V c) for all a， b ， cεH; 

~1j aA(bV (c ^ a))< (a !\ b) V (a^c) for a ll a, b, cE H; 

λ12 aV(bA (c V a))> Ca V b)A (a Vc) for a ll a, b, cE H. 

C[early every distribu ti ve X'"b-Iattice is a lso modular. Note that the cquality 

sign necd not always hold in D" D2' Mj and .'1'12, Appropriate examples onc 
can find by considering e. g. finite trees. 
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Lcl CSllb (L) bc lhe sel o[ noncmply convcx sublalticc5 of a lallicc L and 

A , Br:=Cs’‘b(L). 1\ 5 、\'ell known , lhe ICa5l convcx 5ublallicc of L containing A 

and B i5 A V B = {xlxεL ， a,̂ b,< x< aZV bZ for 50me a
" 

aZεA and b
" 

bZc=B} 
Moreo、 er, if A n B7' rþ, lhen there i5 a grcatc5t convcx sublatticc of L contained 

in A and B , namcly A ^ B= A n B. XOW, by putling A ^ B= A V B for A and B 

wilh A n B~ ø， 、，'e see lhal the convex 5ublatticc5 of a lattice constitutc a X!uù 

-Iallice CS'ω(L) ， where A V B i5 givcn abovc, A ^ B = A n B when An B낯rþ and 

olhcrwi5c A^B= A V B. Kotc lhat whcn AnB켜rþandtu2A n B， lhcna ^ bE A ^ B 

for a, b> tu and a V bc A ^ B for a, b< tu, whcrc a i5 from A and b frorn B. 1\5 

well known , every idcal of L i5 also a convcx sublatlice of L. If 1 and J arc 
lwo idcals of L, lhcn I ^ J = f n J in lhe lallice I (L) of all idcal5 of L and 
I V J = (xlxE L , x< i V j for somc i E I and j E !l in I (L) . Thus lhe meel and 
join of lwo ideal5 in I (L) and Csub(L) coincide and I\'e 5hall U5C a singlc 5ign 
V ( ^ ) for the join (thc meet) in I (L) a5 lI'ell a5 in Cs“b(L). 

An clement AεCs“b(L) is 
(1) dislrib“live if and on ly if AV(X^ y)> (A V X) ^ (A V Y) for all X , YE 

Csub(L) ’ 

(2) slandard if and on ly if it i5 di5lributive and (3) and (4) hold , ‘,,'here 

(3) when A n X 7' rþ , then A ^ X =A^Y and A V X = A V Y imply X =Y; 

(4) 、‘ hen AnX= rþ , lhen (A) ^ (Xj = (Aj ^(Yj and (A) V(X j = (Aj V(Yj imply 

(X) = (YJ. x , YεCs씨(L) and (XJ = [.1.εL and . < x for 50me xE X ) ; 

(5) ne1llral if and only if it is 5tandard and dually di5lributive. 

2. Di5tributivc convcx sublattices 

In lhis scction we shall describe di5lributive cOI1l'e" sublatticc5 of a latlice 

L. At first we wrilc a lemma, the proof of 、，'hich i5 obvioU5 and hence 

omittcd. 

LEM~lA J. Lel A , X. YECs씨(L). 11 X n y = rþ. Ihen A V (X ^ Y) > (AVXM 

(AV Y). 

The following lheorcm sh。、‘ s a connection betwcen convex sublattices. ideals 
and dual ideal5 of L. 

T I-I EOREM J. Lel AεCs써(L). Then A is dislrib •. 씨ve in Csub( L) il and only 

il (A) is dislribμlive in f (L) and [A) is dislribulive ’n lhe lallice D(L) 01 

d.ι1 ideals 01 L 
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PllOOF. .-\ssume first that A is distributi\'C in Cs“b(L). We shall show the 

distribu1i\' i1y of (A) in f(L) only; thc proof for [A) is analogous and hence 

omitted 

Let (A) = ("1 ,,< a, aεA ) . ßecause A is a sublattice of L , "1 V "2< a1 V a2EA 

for any 1\\'0 elements "1' X2E(AJ. and th us (A) i5 an ideal of L. Lct X , Yε 

I (L)-Csub(L). BeCau5C A is distributive in Cs"b(L) , AV(X ̂  y)> (A V X) ^ (A 

V Y) in Csub(L). If zε((A) V X )A ((A) V Y), then zε(A) V X , (A] V y , and 50 

z < a1V X
1. aZ '! yz’ ‘vhcrc a(. a2εA， X 1르X， y2εY and (a1 Vx1)A (aZ VY2)르(A V 

X )A ( A V Y) . ßecause A V(X ^ y)> (AV X )A (A V Y), (a 1 Vx)^(a2 Vy김εA '!(X^ 

Y). But then a3V(x3^ Y3) > (a 1V"1)^(a2Vy.)>z , and thU5 zε(A] V(X ^ Y). 

This 5ho“ s that (A) V(X ^ y)> ((A) '! X )A ((A) V Y), and thc distributivity of 
(A) in I ( L) fo llow5. 

Converscly , let AεCsub(L) ， (A) bc distributive in I(L) and [A) distributivc 
in D(L ). We 5hal l 5how the distributivity of A in Csub( L) . 

Let zE(A V X )A (A V Y ), where X and Y are two arbitrary elemcnts of Csub(L). 

ßccausc Ør' Ac(A V X) ^ (AVY) , t hen zE A V X , AVY, whcncc a1 ̂ "1' a2 
^ Y2 < z< a3 V X3’ a4 V Y4 with a( , a2, a3, a4E A. X(. X3εX and Y2' y.E Y. Accor­
ding to Lcmma 1 wc may assume that X n Y r'ø. When wE X ^ Y , we may 

c1carly 이1oo5c the c1cmcnts "i and Yj abovc so that x1' YZ< w<"3' Y.. Obviously 
(a3 V x3)A (a4V Y4) bclongs to thc ideal ((A) V(X]) ^ ((A] V(Y]) , to which thU5 
z also belongs. According to thc distributivity of (A) in I (L) , ((A) V(X]) ^ 

((A) V(Y ])=(A) V((X ) A(Y]) , whence (a3 Vx)^ (a. Vy.)<a’ V(x’ ^y') with ι 
ε(A) ， X' E (X) and y'ε(Y]. W c can c1early ch∞se new elements a , x and Y 

from A, X and Y , respcctivcly, 5uch that a'V(x’ ^y')< aV(,,^y) , a'< a , ,,'< 

X, 10 and Y’ < w, y. Con5cqucntly , z<aV(x^y)EAV(X ̂ Y). Similar ly, z, (a 1 ̂  
x 1 ) '!(α，! yo) E ( [A) V [X) )A ([A )A [Y)), and by using 1hc distributivity of [A) 

in D( L) and the dual argumentation , \\'e obtain that a" ̂  (x" Vy")E A V (X ̂  Y) 

with a" ̂ (x" V y") < z. Accordingly, ‘," ^(x"'! y")< z < aV(x ^y) , whcrc both 
Iimits are from A V (X^Y) , whencc zE A V(X ^ Y). The results abovc and 

lιemma 1 imply no\\' that A V(X V y)> (AVX)^(AVY) for all X , Y E Csub(L) , 

、I' hich pro、 es the di5tributivity of A in Csub(L). 

As a corollary \ve can 、.\'ritc

COROLL\RY 1. Let a< b α L. Tlw interual [a, b) E Csub(L) is dislributiue 

in Csub ( L ) if and only if b is dislribμtiue and a dually disl,'ibutiue in L. 

M oreoucr, [b) is distrib"μiuc in CSllb(L) if and only if b is distributiue as well 
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as dually dislribttlive in L. 

3. Standard elemcnts of Csub(L). 

The standardncss of an element in a latticc has many cqu ivalent dcfinitions. 

AJthough one can modify these deCinilions [or Cs.φ(L) ， lhe equ ivaJence need 

not hold any more. As an examplc \vc consider the condition 

(6) X A(AVY) < (X^A)V(X^Y) for.1I X， YECsμb(L) . 

A t first we prove 

LDß1A 2. Lel A, X ,Y E Csub (L). Tlze inequalily X ^(A V y) <(X ^ A)V(X ^ 

Y) Izolds if X = L or A < Y or X n A = ø or Xny = ø or X n(A v Y) =ø. 

PRoor. lf X = L , thcn X A(A V y) = A VY=(X^A)V(X ^ y) . J[ A < Y , then 

X A(AVY) = X ^ Y <(X ^ A) V(X ^ Y ). Jf X n A = X n y = ø, lhen (X ^ A) V(X ^ Y) 

=(X V A) V (X V Y) = X V AVY> X A(AVY). 1f X n A= ø and X n Y r'ø, lhen (X 

^A)V(X ^ y) = X VA> X> X I\ (AV Y). Jf X n.A낯ø and Xny = ø, lhcn ( X ^ A) 

V(X I\ Y )= X V Y > X > X A(A V Y). H X n(A v Y) = ø, th en X n A = X n y = ø, and 
this case is proved above. 

N。、v ‘,,"e can provc 

THEORD12. Lel A르Csκb(L) be slandard. TI,." (6) Izolds. 

PROOf. LelB= X A(AVY )and C=(X^A)V(X^ Y) , andaccordingloLemma 2 

\Ve may assume that X n A켜￠잊X n y， Xn(AVY)잊ø， X r'L and A투 Y. We 

show firsl lhat A^B=A^C. After showing AVB=AVC 、vc cun conclude by 

(3) lhal B =C. This and Lemma 2 prove l hcn thc validily of (6) 

Now A ^ X=AnX , X n Ac C anù X n Ac A n C= A^C. Furlher, A \ B = A n B 

= A n(X n (AVY) ) = (AnX )n (A V Y) =An X = A ^ X. :-'Joreovcr, X이A， X n y c 

Xn(AV Y) =B , 、vhcnce Cc B and A n Cc AnB. By combining thcsc rcs lIlts we 

。btain A^X< A^C< A^B< A^X , a nd lhus A^C= A^B, 、，，' hcrc A n B ;;" Ør' 

A n C. 
Sccond Jy \\'c prove A V B= A V C. CJearly A V (X n Y)ζA VX， A \iY , 、.\'hence

A V (Xn Y)ε(A V X) n (A V Y). Thus, undcr lhc assumplions madc above, the 

distribulivily of A in Csub(L) impJies the cquality AV(X^Y) = (A V X )A (AV 

Y) . 1\0 \V A V B = A \I (XA(A V Y)) (AV X) A(A VY) =A V (X ̂ Y) = Aν (XI'. A) V 
(X^ Y) A ‘ ’ C. Thi s compJclcs lhc proof. 

Thc COI1 \'crlle ùoe~ not hold; this \vill bc ~h ow n by an cxamplc aflcr thc 

ncxt thcnrcm 
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TH EORE.\l 3. Lel AECs씨，(L) . 1 f A i s slandard ;" Csub(L) , Ihen (Aj is 

slandard in I ( L) 

PROOF. Wc shall sho lV lhat (Aj is dislributivc in I(L) , and (Aj ^ X =(A j ̂ Y 

and (Aj V X =(A j V Y imply X = Y for all X , Y드J(L) ， from which thc standard ­
ncss of (Aj in J(L) follows [2, Theorcm m.3.5j . 

Bccause A is distribut ivc in Csub(L) , thc distributi vity of (Aj in J( L) follo“ s 
fromTheorcm 1. Let now (A j^ X =(AJ^ Y and (AJ V X = (Aj V Y for some X , Y 

εI(L) . lf A n X r' ø, then also A ny￥ø， because (AJ ^ X = (Aj ^ Y and (Aj n X 

conlains at Icast one clement from A. ßy sim ilar argument wc sec that A n X 

= A n y , and thus in this case A ^ X = A ^ Y in Csub(L). 끼rhen X E I(L) , then 

A V X = (AJ V X in Cs“b(L) , whence the equation A V X = AVY follows [rom 
(Aj V X = (Aj V Y. ßecausc A is standard in Csub(L) , (3) implies now X = Y. 

When A n X = ø, then X =Y follws by (4) f rom (AJ ^ X = (AJ ^ Y and (AJ V X 

=(Aj V Y. This completes the proof. 

No lV we show that (6) does not imply the standardness of an element AE 
Csub(L) . Lct L be the well known Icast modular and nondistributivc lattice 

with clcmcnts O<a, b, c<1. Wc put A = [aJ and show that X ^ (A V Y) < (X ̂ A) V 
( X ̂ Y ) for all X , Y E Csllb( L). According to Lemma 2 we may assume that X 

'T L, A후Y， X n A ，，;ø켜Xn y and X n(A V Y) ";Ø. X n A ,,;ø implies that aE X , 

a nd A후Y that a '1'Y . Sincc X = [이 contradicts Xny ,,;ø, we have X =(aJ or 

[a). lf X = (aJ, thcn X n y = {이 ， whcncc (X ^ A)V(X ^ Y) = {a} V (，이 =X>X^ 
( A V Y ) . lf X = [a) , then X ^ Y = [I }. whcncc ( X ^ A)V(X ^ Y )= {a} V {l} = X > 

X ^ ( A V Y) . lIence A satisfies (6). ßu t (aJ is not standard in J( L) , and thus 
by 1'heorcm 3 A is ccrlainJ y not standa rd in CS1씨 (L) 

We call a n elcmenl A~Csub (L) dO /1blc slandard if A is distributi vc in CS/lb 

(L ) and satisfics (3) , (4) and (7) . whcrc 

(7) 、vhcn An X =ç. thcn [A)A [X )= iA) 끼 [Y) and [A)V [X )= [A)V [Y) im pl y 

[X)= [Y) for all X , Y L CSl1b(L). 

~o\\' we can provc 

TH CORD I 4. Lel ArCsub(L ). A is dO l1ble sla1‘dard in CS/lb(L) iJ and 01z!y 

if (A) is slanáard i /l J(L) and [.4 ) slandard in D(L) 

PROOF. Lct A bc doublc sta ndard. The standard ness of (,1] in J(L) i5 

a lrcady pro\'cd in Thcorcm 3. Thc slandardncss of ’A) in D( L ) can bc prω cd 
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dually, and in the dual proof (4) is substi tutcd by (7), as casily seen. Thus 

we concentrate on thc converse proof, only. 

Let ( A] be standard in I (L) . [A) standard in D( L) and X , YεCsub(L). 

Bccausc (A ] is thcn distributivc in I(L ) and [A) distributi ve in D( L) , A is 

distributive in C.<1lb(L) by Thcorcm 1. Thus it remains to show the va lidity 

of (4) , (7) and (3) . Jf A n X = ø, then ( A] A(X ] = (A] ^ (Y ] and (A] V(X ] = 

(A] V(Yl imply (X] = (Y ] because ( A ] is standard in I (L) [2 , Thorem JJl .3.5] . 

The valid ity of (7) is proved dually. Assume now that A n X r'ø. A ^ X = A ^ Y 

and A V X = A V Y. 1\s one can easily see, these equations imply ( A] ̂ (X ] = 

(A] A(Y ]. (A] V (X] = (A] V (Y]. [A )A [X) = [A )A [Y) and [A) V [X ) = [A) V [Y). 

Because (A] is standard in I (L). the first two equations imply (X] = (Y ] , and 

because [A) is standard in D(L). the remailling two equations imply [X ) = [Y ). 

But thcn X =(X ] n [X ) = (Y ] n [Y) = Y , which proves (3). Accordingly. A is 

double standard in Csnb(L) , and the theorem follows. 

Because L is standard in I ( L ) as well as ill D(L). [l) = L is standard in 

D(L) for every I E I (L) and ( D] = L is standard in I ( L) for every DE D( L) 

Thus by Theorcm 4 cvery standard ideal 1 (standard dual ideal D) of L is 

double standard in Csμb(L). Thc convex sublatt ice 씨 is standard in Csnb ( L) 

if b is standard and dually distributive in L. Indeed, the sta ndardness and the 

dual distributivity of b in L impl y the distri butivity of [b] in Csub(L), and 

(4) holds by the standardness of b in L. lf [b) n X잊ø， then bE X , Y , and thus 

X= [끼 \/ X= [b] V Y = Y , which proves (3). l\ow we can write a corollary 

COROLLARY 2. Euery slandard ideal (dnal ideal) of L is donble slandard in 

Csnb(L) . An inlerual [a , b] is donble slandard in Csub(L) if and only if b is 

slandard aηd a duall y slaηdard in L. [ó) is donble slandard in Csub(L) if and 

only if b is nenlral (1. e. standard and dnally slandard) in L , and [b] is 

slandard in Csnb(L) , if b is standard and dnally dislribulive iη L. 

As 、vell known , in a modular lattice L an idcal (a dual idea l) is distribut ive 

if and on ly if it is standard [2. Theorem m.2.6] . This and Theorems 1 and 4 

imply 

TIIEOI~E ~ I 5. Lel L be a 1I10dnlar latlice and AE Csub(L) . A is dislribnlive 

in Csnb(L) if and only if A is slanda .. d in Csnb(L). IVforeouer , A is slandard 

tη Csnb(L) if and only if A is donble slandard in Csnb( L ) 
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4. Ncutral convcx sublatticcs 

Al firsl we likc lo show a conneclion bel\veen the neu l rality of A in CS1.띠 (L) 

and lhc nculralily oî (A j in I(L) . 

THEOREM 6. Lel A E Cs’‘b( L ). If A is 1Ze“lral i 1Z Csub(L). I"en ( A j is 

neulral iη l (L) . 

PROOF. When A is neulral , il is also slandard , and lhus by Theorem 3 、.\"C

know lhat (Aj is standard in I ( L) . Thc neutralily oî (Aj in I (L) is proved by 

showing the dual distributivily of (Aj in I ( L) [2, Theorem m. 3. 6j. Thc dual 

proof of Theorem 1 shows that the dual distributivity of A in Csub( L) implics 

the dual distributivity of (Aj in Csub(L) , and lhus lhe neutrality of A in 

Cs !tb(L) implies the neutrality of (Aj in I (L). 

ßy modifying thc definilion of double slandardness, t he concept of double 

neulrali ty in Csub(L) can be defined and an ’ analogy of Theorcm 4 provcd. 

Th is gencraIizaion is obvious, and hence we omit it. AJso an anaIogy of 

Corollary 2 as “’ell as lhal of Thcorcm 5 can be easily presented. 

As a last observalion of lhis paper we like to give another immedialc 

genera1ization. \V hcn L is a dislribulive laltice lhcn (Aj is dislribuli ve in 

I (L) as weJl as [A) in D(L) for every A E Csub( L) . According lo Thorem 1 

and its dua l we see that then Csub(L) is a distributive X'" b-Iattice. Conversely, 

when Csub(L) is a distributi ve X"b- Iatticc, lhcn I V (J ̂ K )> CI V J) ^ CI V K) 

for a ll three ideals 1, J, K of L in Cs“b(L) . Hence I (L) is a distributivc 

lattice and thus L , too. Accordingly 、，ve can write 

TIIEOREM 7. A lallice L is dislribμtive if and only if Cs!tb(L) is a dislribu . 

/ive ;(, , -Iattice. ',b 
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