Kyungpook Math. J. Volume 27, Number 1 June, 1987

DISTRIBUTIVE, STANDARD AND NEUTRAL ELEMENTS IN THE JOINSEMILATTICE OF CONVEX SUBLATTICES OF A LATTICE

By Juhani Nieminen

1. Introduction and basic concepts

The purpose of this paper is to generalize the properties of distributive, standard and neutral ideals of a lattice. A generalization of standard ideals is given by Fried and Schmidt in [1], where the concept of a standard convex sublattice is defined and related properties are described. The main difficulty in the generalization work is the lack of a suitable algebra for describing the convex sublattices of a lattice. We shall first introduce an algebra for convex sublattices of a lattice and thereafter consider distributive, standard and neutral convex sublattices by means of the properties of the algebra.

A χ_{lub} -lattice $H = (H, \lor, \land)$ is a joinsemilattice, where $a \lor b = lub \{a, b\}$, the least upper bound of a and b, for every two elements $a, b \in H$, and $a \land b = glb \{a, b\}$, the greatest lower bound of a and b, when the set $lb \{a, b\}$ of lower bounds of a and b is nonempty. If $lb \{a, b\} = \phi$, we put $a \land b = a \lor b$. Thus the operation \lor behaves like the corresponding operation in a joinsemilattice, i.e. it is associative and $c \leqslant a$ and $d \leqslant b$ imply $c \lor d \leqslant a \lor b$. Unfortunately, $c \leqslant a$ and $d \leqslant b$ need not imply $c \land d \leqslant a \land b$, and \land need not be associative. On the other hand, $a \land a = a$ and $a \land b = b \land a$ for all $a, b \in H$. As easily seen, every lattice is also a χ_{lub} -lattice, but every joinsemilattice S need not be a χ_{lub} -lattice, because the property $lb \{a, b\} \neq \phi$ in S need not imply the existence of an element glb $\{a, b\}$ in S. A χ_{lub} -lattice H is called distributive (modular) if the conditions D_1 and D_2 (M_1 and M_2) below hold:

- D₁ $a \wedge (b \vee c) \leq (a \wedge b) \vee (a \wedge c)$ for all $a, b, c \in H$;
- $D_{a} \quad a \lor (b \land c) \ge (a \lor b) \land (a \lor c) \text{ for all } a, b, c \in H;$
- $M_1 \quad a \wedge (b \vee (c \wedge a)) \leq (a \wedge b) \vee (a \wedge c) \text{ for all } a, b, c \in H;$
- $M_{a} a \vee (b \wedge (c \vee a)) \geq (a \vee b) \wedge (a \vee c) \text{ for all } a, b, c \subseteq H.$

Clearly every distributive χ_{lub} -lattice is also modular. Note that the equality sign need not always hold in D₁, D₂, M₁ and M₂. Appropriate examples one can find by considering e.g. finite trees.

Let Csub (L) be the set of nonempty convex sublattices of a lattice L and $A, B \in Csub(L)$. As well known, the least convex sublattice of L containing A and B is $A \lor B = \{x | x \in L, a_1 \land b_1 \leq x \leq a_2 \lor b_2$ for some $a_1, a_2 \in A$ and $b_1, b_2 \in B\}$. Moreover, if $A \cap B \neq \phi$, then there is a greatest convex sublattice of L contained in A and B, namely $A \land B = A \cap B$. Now, by putting $A \land B = A \lor B$ for A and B with $A \cap B = \phi$, we see that the convex sublattices of a lattice constitute a χ_{lub} -lattice Csub(L), where $A \lor B$ is given above, $A \land B = A \cap B$ when $A \cap B \neq \phi$ and otherwise $A \land B = A \lor B$. Note that when $A \cap B \neq \phi$ and $w \in A \cap B$, then $a \land b \in A \land B$ for a, $b \geq w$ and $a \lor b \in A \land B$ for a, $b \leq w$, where a is from A and b from B. As well known, every ideal of L is also a convex sublattice of L. If I and J are two ideals of L, then $I \land J = I \cap J$ in the lattice I(L) of all ideals of L and $I \lor J = \{x | x \in L, x \leq i \lor j \text{ for some } i \in I \text{ and } j \in J\}$ in I(L). Thus the meet and join of two ideals in I(L) and Csub(L) coincide and we shall use a single sign $\lor (\land)$ for the join (the meet) in I(L) as well as in Csub(L).

An element $A \in Csub(L)$ is

(1) distributive if and only if $A \lor (X \land Y) \ge (A \lor X) \land (A \lor Y)$ for all X, $Y \in Csub(L)$;

(2) standard if and only if it is distributive and (3) and (4) hold, where

(3) when $A \cap X \neq \phi$, then $A \wedge X = A \wedge Y$ and $A \vee X = A \vee Y$ imply X = Y;

(4) when $A \cap X = \phi$, then $(A] \wedge (X] = (A] \wedge (Y]$ and $(A] \vee (X] = (A] \vee (Y]$ imply (X] = (Y], $X, Y \in Csub(L)$ and $(X] = \{z | z \in L \text{ and } z \leq x \text{ for some } x \in X\}$;

(5) neutral if and only if it is standard and dually distributive.

2. Distributive convex sublattices

In this section we shall describe distributive convex sublattices of a lattice L. At first we write a lemma, the proof of which is obvious and hence omitted.

LEMMA 1. Let $A, X, Y \in Csub(L)$. If $X \cap Y = \phi$, then $A \vee (X \wedge Y) \geq (A \vee X) \wedge (A \vee Y)$.

The following theorem shows a connection between convex sublattices, ideals and dual ideals of L.

THEOREM 1. Let $A \Subset Csub(L)$. Then A is distributive in Csub(L) if and only if (A] is distributive in I(L) and [A) is distributive in the lattice D(L) of dual ideals of L. PROOF. Assume first that A is distributive in Csub(L). We shall show the distributivity of (A] in I(L) only; the proof for [A) is analogous and hence omitted.

Let $(A] = \{x \mid x \leq a, a \in A\}$. Because A is a sublattice of $L, x_1 \lor x_2 \leq a_1 \lor a_2 \in A$ for any two elements $x_1, x_2 \in (A]$, and thus (A] is an ideal of L. Let $X, Y \in I(L) \subset Csub(L)$. Because A is distributive in $Csub(L), A \lor (X \land Y) \ge (A \lor X) \land (A \lor Y)$ in Csub(L). If $z \in ((A] \lor X) \land ((A] \lor Y)$, then $z \in (A] \lor X, (A] \lor Y$, and so $z \leq a_1 \lor x_1, a_2 \lor y_2$, where $a_1, a_2 \in A, x_1 \in X, y_2 \in Y$ and $(a_1 \lor x_1) \land (a_2 \lor y_2) \in (A \lor X) \land (A \lor Y)$. Because $A \lor (X \land Y) \ge (A \lor X) \land (A \lor Y), (a_1 \lor x_1) \land (a_2 \lor y_2) \in A \lor (X \land Y)$. But then $a_3 \lor (x_3 \land y_3) \ge (a_1 \lor x_1) \land (a_2 \lor y_2) \ge z$, and thus $z \in (A] \lor (X \land Y)$. This shows that $(A] \lor (X \land Y) \ge ((A] \lor X) \land ((A] \lor Y)$, and the distributivity of (A] in I(L) follows.

Conversely, let $A \subseteq Csub(L)$, (A] be distributive in I(L) and [A) distributive in D(L). We shall show the distributivity of A in Csub(L).

Let $z \in (A \lor X) \land (A \lor Y)$, where X and Y are two arbitrary elements of Csub(L). Because $\phi \neq A \subset (A \lor X) \land (A \lor Y)$, then $z \in A \lor X$, $A \lor Y$, whence $a_1 \land x_1$, a_2 $\wedge y_2 \leq z \leq a_3 \vee x_3$, $a_4 \vee y_4$ with a_1 , a_2 , a_3 , $a_4 \in A$, x_1 , $x_3 \in X$ and y_2 , $y_4 \in Y$. According to Lemma 1 we may assume that $X \cap Y \neq \phi$. When $w \in X \wedge Y$, we may clearly choose the elements x_i and y_i above so that x_1 , $y_2 \leq w \leq x_3$, y_4 . Obviously $(a_3 \lor x_3) \land (a_4 \lor y_4)$ belongs to the ideal $((A] \lor (X]) \land ((A] \lor (Y])$, to which thus z also belongs. According to the distributivity of (A] in I(L), $((A] \lor (X]) \land$ $((A] \lor (Y]) = (A] \lor ((X] \land (Y]), \text{ whence } (a_3 \lor x_3) \land (a_4 \lor y_4) \leq a' \lor (x' \land y') \text{ with } a'$ $\in (A]$, $x' \in (X]$ and $y' \in (Y]$. We can clearly choose new elements a, x and y from A, X and Y, respectively, such that $a' \lor (x' \land y') \leq a \lor (x \land y), a' \leq a, x' \leq a$ x, w and $y' \leq w, y$. Consequently, $z \leq a \lor (x \land y) \in A \lor (X \land Y)$. Similarly, z, $(a_1 \land y) \in A \lor (X \land Y)$. $x_1 \lor (a_2 \land y_2) \in ([A) \lor [X)) \land ([A) \land [Y))$, and by using the distributivity of [A)in D(L) and the dual argumentation, we obtain that $a'' \wedge (x'' \lor y'') \in A \lor (X \land Y)$ with $a'' \wedge (x'' \vee y'') \leq z$. Accordingly, $a'' \wedge (x'' \vee y'') \leq z \leq a \vee (x \wedge y)$, where both limits are from $A \lor (X \land Y)$, whence $z \in A \lor (X \land Y)$. The results above and Lemma 1 imply now that $A \lor (X \lor Y) \ge (A \lor X) \land (A \lor Y)$ for all $X, Y \in Csub(L)$. which proves the distributivity of A in Csub(L).

As a corollary we can write

COROLLARY 1. Let $a \leq b$ in L. The interval $[a, b] \in Csub(L)$ is distributive in Csub(L) if and only if b is distributive and a dually distributive in L. Moreover, [b] is distributive in Csub(L) if and only if b is distributive as well as dually distributive in L.

3. Standard elements of Csub(L).

The standardness of an element in a lattice has many equivalent definitions. Although one can modify these definitions for Csub(L), the equivalence need not hold any more. As an example we consider the condition

(6) $X \land (A \lor Y) \leq (X \land A) \lor (X \land Y)$ for all $X, Y \in Csub(L)$. At first we prove

LEMMA 2. Let $A, X, Y \in Csub(L)$. The inequality $X \land (A \lor Y) \leq (X \land A) \lor (X \land Y)$ holds if X = L or $A \leq Y$ or $X \cap A = \phi$ or $X \cap Y = \phi$ or $X \cap (A \lor Y) = \phi$.

PROOF. If X=L, then $X \land (A \lor Y) = A \lor Y = (X \land A) \lor (X \land Y)$. If $A \leqslant Y$, then $X \land (A \lor Y) = X \land Y \leqslant (X \land A) \lor (X \land Y)$. If $X \cap A = X \cap Y = \phi$, then $(X \land A) \lor (X \land Y) = (X \lor A) \lor (X \lor Y) = X \lor A \lor Y \gg X \land (A \lor Y)$. If $X \cap A = \phi$ and $X \cap Y \neq \phi$, then $(X \land A) \lor (X \land Y) = X \lor A \gg X \land (A \lor Y)$. If $X \cap A \neq \phi$ and $X \cap Y = \phi$, then $(X \land A) \lor (X \land Y) = X \lor A \gg X \land (A \lor Y)$. If $X \cap (A \neq Y) = \phi$, then $(X \land A) \lor (X \land Y) = X \lor Y \gg X \land (A \lor Y)$. If $X \cap (A \lor Y) = \phi$, then $X \cap A = X \cap Y = \phi$, and this case is proved above.

Now we can prove

THEOREM 2. Let $A \subseteq Csub(L)$ be standard. Then (6) holds.

PROOF. Let $B=X \wedge (A \vee Y)$ and $C=(X \wedge A) \vee (X \wedge Y)$, and according to Lemma 2 we may assume that $X \cap A \neq \phi \neq X \cap Y$, $X \cap (A \vee Y) \neq \phi$, $X \neq L$ and $A \leq Y$. We show first that $A \wedge B = A \wedge C$. After showing $A \vee B = A \vee C$ we can conclude by (3) that B=C. This and Lemma 2 prove then the validity of (6).

Now $A \land X = A \cap X$, $X \cap A \subset C$ and $X \cap A \subset A \cap C = A \land C$. Further, $A \land B = A \cap B = A \cap (X \cap (A \lor Y)) = (A \cap X) \cap (A \lor Y) = A \cap X = A \land X$. Moreover, $X \cap A$, $X \cap Y \subset X \cap (A \lor Y) = B$, whence $C \subset B$ and $A \cap C \subset A \cap B$. By combining these results we obtain $A \land X \leq A \land C \leq A \land B \leq A \land X$, and thus $A \land C = A \land B$, where $A \cap B \neq \phi \neq A \cap C$.

Secondly we prove $A \lor B = A \lor C$. Clearly $A \lor (X \cap Y) \subset A \lor X$, $A \lor Y$, whence $A \lor (X \cap Y) \subset (A \lor X) \cap (A \lor Y)$. Thus, under the assumptions made above, the distributivity of A in Csub(L) implies the equality $A \lor (X \land Y) = (A \lor X) \land (A \lor Y)$. Now $A \lor B = A \lor (X \land (A \lor Y)) = (A \lor X) \land (A \lor Y) = A \lor (X \land Y) = A \lor (X \land A) \lor (X \land Y) = A \lor C$. This completes the proof.

The converse does not hold; this will be shown by an example after the next theorem.

THEOREM 3. Let $A \subseteq Csub(L)$. If A is standard in Csub(L), then (A] is standard in I(L).

PROOF. We shall show that (A] is distributive in I(L), and (A] $\land X = (A] \land Y$ and (A] $\lor X = (A] \lor Y$ imply X = Y for all $X, Y \subseteq I(L)$, from which the standardness of (A] in I(L) follows [2, Theorem II.3.5].

Because A is distributive in Csub(L), the distributivity of (A] in I(L) follows from Theorem 1. Let now $(A] \land X = (A] \land Y$ and $(A] \lor X = (A] \lor Y$ for some X, Y $\subseteq I(L)$. If $A \cap X \neq \phi$, then also $A \cap Y \neq \phi$, because $(A] \land X = (A] \land Y$ and $(A] \cap X$ contains at least one element from A. By similar argument we see that $A \cap X$ $= A \cap Y$, and thus in this case $A \land X = A \land Y$ in Csub(L). When $X \in I(L)$, then $A \lor X = (A] \lor X$ in Csub(L), whence the equation $A \lor X = A \lor Y$ follows from $(A] \lor X = (A] \lor Y$. Because A is standard in Csub(L), (3) implies now X = Y. When $A \cap X = \phi$, then X = Y follows by (4) from $(A] \land X = (A] \land Y$ and $(A] \lor X$ $= (A] \lor Y$. This completes the proof.

Now we show that (6) does not imply the standardness of an element $A \in Csub(L)$. Let L be the well known least modular and nondistributive lattice with elements 0 < a, b, c < 1. We put $A = \{a\}$ and show that $X \land (A \lor Y) \leq (X \land A) \lor (X \land Y)$ for all $X, Y \in Csub(L)$. According to Lemma 2 we may assume that $X \neq L$, $A \leq Y$, $X \cap A \neq \phi \neq X \cap Y$ and $X \cap (A \lor Y) \neq \phi$. $X \cap A \neq \phi$ implies that $a \in X$, and $A \leq Y$ that $a \notin Y$. Since $X = \{a\}$ contradicts $X \cap Y \neq \phi$, we have X = (a] or [a). If X = (a], then $X \cap Y = \{0\}$, whence $(X \land A) \lor (X \land Y) = \{a\} \lor \{0\} = X \gg X \land (A \lor Y)$. If X = [a), then $X \land Y = \{1\}$, whence $(X \land A) \lor (X \land Y) = \{a\} \lor \{1\} = X \gg X \land (A \lor Y)$. Hence A satisfies (6). But (a] is not standard in I(L), and thus by Theorem 3 A is certainly not standard in Csub(L).

We call an element $A \subseteq Csub(L)$ double standard if A is distributive in Csub (L) and satisfies (3), (4) and (7), where

(7) when $A \cap X = \phi$, then $[A) \land [X] = [A) \land [Y]$ and $[A) \lor [X] = [A] \lor [Y]$ imply [X] = [Y] for all $X, Y \in Csub(L)$.

Now we can prove

THEOREM 4. Let $A \subseteq Csub(L)$. A is double standard in Csub(L) if and only if (A] is standard in I(L) and [A) standard in D(L).

PROOF. Let A be double standard. The standardness of (A] in I(L) is already proved in Theorem 3. The standardness of [A] in D(L) can be proved

dually, and in the dual proof (4) is substituted by (7), as easily seen. Thus we concentrate on the converse proof, only.

Let (A] be standard in I(L), [A) standard in D(L) and $X, Y \in Csub(L)$. Because (A] is then distributive in I(L) and [A) distributive in D(L), A is distributive in Csub(L) by Theorem 1. Thus it remains to show the validity of (4), (7) and (3). If $A \cap X = \phi$, then $(A] \wedge (X] = (A] \wedge (Y]$ and $(A] \vee (X] =$ $(A] \vee (Y]$ imply (X] = (Y] because (A] is standard in I(L) [2, Thorem II.3.5]. The validity of (7) is proved dually. Assume now that $A \cap X \neq \phi$, $A \wedge X = A \wedge Y$ and $A \vee X = A \vee Y$. As one can easily see, these equations imply $(A] \wedge (X] =$ $(A] \wedge (Y]$, $(A] \vee (X] = (A] \vee (Y]$, $[A) \wedge [X] = [A) \wedge [Y)$ and $[A) \vee [X] = [A) \vee [Y)$. Because (A] is standard in I(L), the first two equations imply (X] = (Y], and because [A) is standard in D(L), the remaining two equations imply [X] = [Y). But then $X = (X] \cap [X) = (Y] \cap [Y) = Y$, which proves (3). Accordingly, A is double standard in Csub(L), and the theorem follows.

Because L is standard in I(L) as well as in D(L), [I]=L is standard in D(L) for every $I \Subset I(L)$ and (D]=L is standard in I(L) for every $D \Subset D(L)$. Thus by Theorem 4 every standard ideal I (standard dual ideal D) of L is double standard in Csub(L). The convex sublattice $\{b\}$ is standard in Csub(L) if b is standard and dually distributive in L. Indeed, the standardness and the dual distributivity of b in L imply the distributivity of $\{b\}$ in Csub(L), and (4) holds by the standardness of b in L. If $\{b\} \cap X \neq \phi$, then $b \Subset X, Y$, and thus $X = \{b\} \lor X = \{b\} \lor Y = Y$, which proves (3). Now we can write a corollary

COROLLARY 2. Every standard ideal (dual ideal) of L is double standard in Csub(L). An interval [a, b] is double standard in Csub(L) if and only if b is standard and a dually standard in L. {b} is double standard in Csub(L) if and only if b is neutral (i.e. standard and dually standard) in L, and {b} is standard in Csub(L), if b is standard and dually distributive in L.

As well known, in a modular lattice L an ideal (a dual ideal) is distributive if and only if it is standard [2, Theorem $\mathbb{I}.2.6$]. This and Theorems 1 and 4 imply

THEOREM 5. Let L be a modular lattice and $A \subseteq Csub(L)$. A is distributive in Csub(L) if and only if A is standard in Csub(L). Moreover, A is standard in Csub(L) if and only if A is double standard in Csub(L).

4. Neutral convex sublattices

At first we like to show a connection between the neutrality of A in Csub(L)and the neutrality of (A] in I(L).

THEOREM 6. Let $A \equiv Csub(L)$. If A is neutral in Csub(L), then (A] is neutral in I(L).

PROOF. When A is neutral, it is also standard, and thus by Theorem 3 we know that (A] is standard in I(L). The neutrality of (A] in I(L) is proved by showing the dual distributivity of (A] in I(L) [2, Theorem II.3.6]. The dual proof of Theorem 1 shows that the dual distributivity of A in Csub(L) implies the dual distributivity of (A] in Csub(L), and thus the neutrality of A in Csub(L) implies the neutrality of (A] in I(L).

By modifying the definition of double standardness, the concept of double neutrality in Csub(L) can be defined and an analogy of Theorem 4 proved. This generalization is obvious, and hence we omit it. Also an analogy of Corollary 2 as well as that of Theorem 5 can be easily presented.

As a last observation of this paper we like to give another immediate generalization. When L is a distributive lattice then (A] is distributive in I(L) as well as [A) in D(L) for every $A \cong Csub(L)$. According to Thorem 1 and its dual we see that then Csub(L) is a distributive χ_{lub} -lattice. Conversely, when Csub(L) is a distributive χ_{lub} -lattice, then $I \lor (J \land K) \ge (I \lor J) \land (I \lor K)$ for all three ideals I, J, K of L in Csub(L). Hence I(L) is a distributive lattice and thus L, too. Accordingly we can write

THEOREM 7. A lattice L is distributive if and only if Csub(L) is a distributive χ_{lub} -lattice.

REFERENCES

 E. Fried and E.T. Schmidt, Standard sublattices, Algebra Universalis 5(1975), 203 -211.

•

[2] G. Gratzer, General lattice theory, Birkhäuser, Basel, (1978).

Faculty of Technology University of Oulu 90570 Oulu 57 Finland