DISTRIBUTIVE, STANDARD AND NEUTRAL ELEMENTS IN THE JOINSEMILATTICE OF CONVEX SUBLATTICES OF A LATTICE

By Juhani Nieminen

1. Introduction and basic concepts

The purpose of this paper is to generalize the properties of distributive, standard and neutral ideals of a lattice. A generalization of standard ideals is given by Fried and Schmidt in [1], where the concept of a standard convex sublattice is defined and related properties are described. The main difficulty in the generalization work is the lack of a suitable algebra for describing the convex sublattices of a lattice. We shall first'introduce an algebra for convex sublattices of a lattice and thereafter consider distributive, standard and neutral convex sublattices by means of the properties of the algebra.

A $\chi_{\text {lub }}$-lattice $H=(H, \vee, \wedge)$ is a joinsemilattice, where $a \vee b=\operatorname{lub}\{a, b\}$, the least upper bound of a and b, for every two elements $a, b \in H$, and $a \wedge b=$ $\operatorname{glb}\{a, b\}$, the greatest lower bound of a and b, when the set $\operatorname{lb}\{a, b\}$ of lower bounds of a and b is nonempty. If $\operatorname{lb}\{a, b\}=\phi$, we put $a \wedge b=a \vee b$. Thus the operation V behaves like the corresponding operation in a joinsemilattice, i. e. it is associative and $c \leqslant a$ and $d \leqslant b$ imply $c \vee d \leqslant a \vee b$. Unfortunately, $c \leqslant a$ and $d \leqslant b$ need not imply $c \wedge d \leqslant a \wedge b$, and \wedge need not be associative. On the other hand, $a \wedge a=a$ and $a \wedge b=b \wedge a$ for all $a, b \in H$. As easily seen, every lattice is also a $\chi_{\text {lub }}$-lattice, but every joinsemilattice S need not be a $\chi_{\text {lub }}$-lattice, because the property $\mathrm{lb}\{a, b\} \neq \phi$ in S need not imply the existence of an element $\operatorname{glb}\{a, b\}$ in S. A $\chi_{\text {lub }}$-lattice H is called distributive (modular) if the conditions D_{1} and $D_{2}\left(M_{1}\right.$ and $\left.M_{2}\right)$ below hold:

$$
\begin{array}{ll}
\mathrm{D}_{1} & a \wedge(b \vee c) \leqslant(a \wedge b) \vee(a \wedge c) \text { for all } a, b, c \in H ; \\
\mathrm{D}_{2} & a \vee(b \wedge c)>(a \vee b) \wedge(a \vee c) \text { for all } a, b, c \in H ; \\
\mathrm{M}_{1} & a \wedge(b \vee(c \wedge a)) \leqslant(a \wedge b) \vee(a \wedge c) \text { for all } a, b, c \in H ; \\
\mathrm{M}_{2} & a \vee(b \wedge(c \vee a))>(a \vee b) \wedge(a \vee c) \text { for all } a, b, c \in H
\end{array}
$$

Clearly every distributive $\chi_{\text {lub }}$-lattice is also modular. Note that the equality sign need not always hold in D_{1}, D_{2}, M_{1} and M_{2}. Appropriate examples one can find by considering e.g. finite trees.

Let Csub (L) be the set of nonempty convex sublattices of a lattice L and $A, B \in \operatorname{Csub}(L)$. As well known, the least convex sublattice of L containing A and B is $A \vee B=\left\{x \mid x \in L, a_{1} \wedge b_{1} \leqslant x<a_{2} \vee b_{2}\right.$ for some $a_{1}, a_{2} \in A$ and $\left.b_{1}, b_{2} \in B\right\}$. Moreover, if $A \cap B \neq \phi$, then there is a greatest convex sublattice of L contained in A and B, namely $A \wedge B=A \cap B$. Now, by putting $A \wedge B=A \vee B$ for A and B with $A \cap B=\phi$, we see that the convex sublattices of a lattice constitute a $\chi_{\text {lub }}$ -lattice $\operatorname{Csu} b(L)$, where $A \vee B$ is given above, $A \wedge B=A \cap B$ when $A \cap B \neq \phi$ and otherwise $A \wedge B=A \vee B$. Note that when $A \cap B \neq \phi$ and $w \in A \cap B$, then $a \wedge b \in A \wedge B$ for $a, b>w$ and $a \vee b \in A \wedge B$ for $a, b<w$, where a is from A and b from B. As well known, every ideal of L is also a convex sublattice of L. If I and J are two ideals of L, then $I \wedge J=I \cap J$ in the lattice $I(L)$ of all ideals of L and $I \vee J=\{x \mid x \in L, x<i \vee j$ for some $i \in I$ and $j \in J\}$ in $I(L)$. Thus the meet and join of two ideals in $I(L)$ and $C s u b(L)$ coincide and we shall use a single sign $V(\Lambda)$ for the join (the meet) in $I(L)$ as well as in $C s u b(L)$.

An element $A \in C \operatorname{sub}(L)$ is
(1) distributive if and only if $A \vee(X \wedge Y)>(A \vee X) \wedge(A \vee Y)$ for all $X, Y \in$ Csub (L) ;
(2) standard if and only if it is distributive and (3) and (4) hold, where
(3) when $A \cap X \neq \phi$, then $A \wedge X=A \wedge Y$ and $A \vee X=A \vee Y$ imply $X=Y$;
(4) when $A \cap X=\phi$, then $(A] \wedge(X]=(A] \wedge(Y]$ and $(A] \vee(X]=(A] \vee(Y]$ imply $(X]=(Y], X, Y \in \operatorname{Csub}(L)$ and $(X]=\{z \mid z \in L$ and $z<x$ for some $x \in X\}$;
(5) neutral if and only if it is standard and dually distributive.

2. Distributive convex sublattices

In this section we shall describe distributive convex sublattices of a lattice L. At first we write a lemma, the proof of which is obvious and hence omitted.

LEMMA 1. Let $A, X, Y \in \operatorname{Csub}(L)$. If $X \cap Y=\phi$, then $A \vee(X \wedge Y)>(A \vee X) \wedge$ $(A \vee Y)$.

The following theorem shows a connection between convex sublattices, ideals and dual ideals of L.

THEOREM 1. Let $A \in \operatorname{Csub}(L)$. Then A is distributive in $C s u b(L)$ if and only if $(A]$ is distributive in $I(L)$ and $[A)$ is distributive in the lattice $D(L)$ of dual ideals of L.

PROOF. Assume first that A is distributive in $\operatorname{Csub}(L)$. We shall show the distributivity of $(A]$ in $I(L)$ only; the proof for $[A)$ is analogous and hence omitted.

Let $(A]=\{x \mid x \leqslant a, a \in A\}$. Because A is a sublattice of $L, x_{1} \vee x_{2} \leqslant a_{1} \vee a_{2} \in A$ for any two elements $x_{1}, x_{2} \in(A]$, and thus $(A]$ is an ideal of L. Let $X, Y \in$ $I(L) \subset C \operatorname{sub}(L)$. Because A is distributive in $\operatorname{Csub}(L), A \vee(X \wedge Y)>(A \vee X) \wedge(A$ $\vee Y)$ in $\operatorname{Csub}(L)$. If $z \in((A] \vee X) \wedge((A] \vee Y)$, then $z \in(A] \vee X$, ($A] \vee Y$, and so $z<a_{1} \vee x_{1}, a_{2} \vee y_{2}, \quad$ where $a_{1}, a_{2} \in A, x_{1} \in X, y_{2} \in Y$ and $\left(a_{1} \vee x_{1}\right) \wedge\left(a_{2} \vee y_{2}\right) \in(A \vee$ $X) \wedge(A \vee Y)$. Because $A \vee(X \wedge Y) \geqslant(A \vee X) \wedge(A \vee Y),\left(a_{1} \vee x_{1}\right) \wedge\left(a_{2} \vee y_{2}\right) \in A \vee(X \wedge$ $Y)$. But then $a_{3} \vee\left(x_{3} \wedge y_{3}\right)>\left(a_{1} \vee x_{1}\right) \wedge\left(a_{2} \vee y_{2}\right)>z$, and thus $z \in(A] \vee(X \wedge Y)$. This shows that $(A] \vee(X \wedge Y)>((A] \vee X) \wedge((A] \vee Y)$, and the distributivity of (A] in $I(L)$ follows.

Conversely, let $A \in C \operatorname{sub}(L),(A]$ be distributive in $I(L)$ and $[A)$ distributive in $D(L)$. We shall show the distributivity of A in $\operatorname{Csub}(L)$.

Let $z \in(A \vee X) \wedge(A \vee Y)$, where X and Y are two arbitrary elements of $C s u b(L)$. Because $\phi \neq A \subset(A \vee X) \wedge(A \vee Y)$, then $z \in A \vee X, \quad A \vee Y$, whence $a_{1} \wedge x_{1}, a_{2}$ $\wedge y_{2}<z<a_{3} \vee x_{3}, a_{4} \vee y_{4}$ with $a_{1}, a_{2}, a_{3}, a_{4} \in A, x_{1}, x_{3} \in X$ and $y_{2}, y_{4} \in Y$. According to Lemma 1 we may assume that $X \cap Y \neq \phi$. When $w \in X \wedge Y$, we may clearly choose the elements x_{i} and y_{j} above so that $x_{1}, y_{2} \leqslant w \leqslant x_{3}, y_{4}$. Obviously $\left(a_{3} \vee x_{3}\right) \wedge\left(a_{4} \vee y_{4}\right)$ belongs to the ideal $((A] \vee(X]) \wedge((A] \vee(Y])$, to which thus z also belongs. According to the distributivity of $(A]$ in $I(L), \quad((A] \vee(X]) \wedge$ $((A] \vee(Y])=(A] \vee((X] \wedge(Y])$, whence $\left(a_{3} \vee x_{3}\right) \wedge\left(a_{4} \vee y_{4}\right) \leqslant a^{\prime} \vee\left(x^{\prime} \wedge y^{\prime}\right)$ with a^{\prime} $\in(A], x^{\prime} \in(X]$ and $y^{\prime} \in(Y]$. We can clearly choose new elements a, x and y from A, X and Y, respectively, such that $a^{\prime} \vee\left(x^{\prime} \wedge y^{\prime}\right) \leqslant a \vee(x \wedge y), a^{\prime} \leqslant a, \quad x^{\prime} \leqslant$ x, w and $y^{\prime} \leqslant w, y$. Consequently, $z \leqslant a \vee(x \wedge y) \in A \vee(X \wedge Y)$. Similarly, $z, \quad\left(a_{1} \wedge\right.$ $\left.x_{1}\right) \vee\left(a_{2} \wedge y_{2}\right) \in([A) \vee[X)) \wedge([A) \wedge[Y))$, and by using the distributivity of $[A)$ in $D(L)$ and the dual argumentation, we obtain that $a^{\prime \prime} \wedge\left(x^{\prime \prime} \vee y^{\prime \prime}\right) \in A \vee(X \wedge Y)$ with $a^{\prime \prime} \wedge\left(x^{\prime \prime} \vee y^{\prime \prime}\right) \leqslant z$. Accordingly, $a^{\prime \prime} \wedge\left(x^{\prime \prime} \vee y^{\prime \prime}\right) \leqslant z \leqslant a \vee(x \wedge y)$, where both limits are from $A \vee(X \wedge Y)$, whence $z \in A \vee(X \wedge Y)$. The results above and Lemma 1 imply now that $A \vee(X \vee Y)>(A \vee X) \wedge(A \vee Y)$ for all $X, Y \in C s u b(L)$, which proves the distributivity of A in $C s u b(L)$.

As a corollary we can write
COROLLARY 1. Let $a<b$ in L. The interval $[a, b] \in C \operatorname{sub}(L)$ is distributive in Csub (L) if and only if b is distributive and a dually distributive in L. Moreover, $\{b\}$ is distributive in $\operatorname{Csub}(L)$ if and only if b is distributive as well
as dually distributive in L.

3. Standard elements of Csub(L).

The standardness of an element in a lattice has many equivalent definitions. Although one can modify these definitions for $C s u b(L)$, the equivalence need not hold any more. As an example we consider the condition
(6) $X \wedge(A \vee Y) \leqslant(X \wedge A) \vee(X \wedge Y)$ for all $X, Y \in C s u b(L)$.

At first we prove
LEMMA 2. Let $A, X, Y \in C s u b(L)$. The inequality $X \wedge(A \vee Y) \leqslant(X \wedge A) \vee(X \wedge$ $Y)$ holds if $X=L$ or $A \leqslant Y$ or $X \cap A=\phi$ or $X \cap Y=\phi$ or $X \cap(A \vee Y)=\phi$.

PROOF. If $X=L$, then $X \wedge(A \vee Y)=A \vee Y=(X \wedge A) \vee(X \wedge Y)$. If $A<Y$, then $X \wedge(A \vee Y)=X \wedge Y \leqslant(X \wedge A) \vee(X \wedge Y)$. If $X \cap A=X \cap Y=\phi$, then $(X \wedge A) \vee(X \wedge Y)$ $=(X \vee A) \vee(X \vee Y)=X \vee A \vee Y \geqslant X \wedge(A \vee Y)$. If $X \cap A=\phi$ and $X \cap Y \neq \phi$, then $(X$ $\wedge A) \vee(X \wedge Y)=X \vee A \geqslant X \geqslant X \wedge(A \vee Y)$. If $X \cap A \neq \phi$ and $X \cap Y=\phi$, then $(X \wedge A)$ $\vee(X \wedge Y)=X \vee Y \geqslant X>X \wedge(A \vee Y)$. If $X \cap(A \vee Y)=\phi$, then $X \cap A=X \cap Y=\phi$, and this case is proved above.

Now we can prove
THEOREM 2. Let $A \in C \operatorname{sub}(L)$ be standard. Then (6) holds.
PROOF. Let $B=X \wedge(A \vee Y)$ and $C=(X \wedge A) \vee(X \wedge Y)$, and according to Lemma 2 we may assume that $X \cap A \neq \phi \neq X \cap Y, X \cap(A \vee Y) \neq \phi, X \neq L$ and $A \neq Y$. We show first that $A \wedge B=A \wedge C$. After showing $A \vee B=A \vee C$ we can conclude by (3) that $B=C$. This and Lemma 2 prove then the validity of (6).

Now $A \wedge X=A \cap X, X \cap A \subset C$ and $X \cap A \subset A \cap C=A \wedge C$. Further, $A \wedge B=A \cap B$ $=A \cap(X \cap(A \vee Y))=(A \cap X) \cap(A \vee Y)=A \cap X=A \wedge X$. Moreover, $X \cap A, X \cap Y \subset$ $X \cap(A \vee Y)=B$, whence $C \subset B$ and $A \cap C \subset A \cap B$. By combining these results we obtain $A \wedge X \leqslant A \wedge C \& A \wedge B \leqslant A \wedge X$, and thus $A \wedge C=A \wedge B$, where $A \cap B \neq \phi \neq$ $A \cap C$.

Secondly we prove $A \vee B=A \vee C$. Clearly $A \vee(X \cap Y) \subset A \vee X, A \vee Y$, whence $A \vee(X \cap Y) \subset(A \vee X) \cap(A \vee Y)$. Thus, under the assumptions made above, the distributivity of A in $\operatorname{Csub}(L)$ implies the equality $A \vee(X \wedge Y)=(A \vee X) \wedge(A \vee$ $Y)$. Now $A \vee B=A \vee(X \wedge(A \vee Y))=(A \vee X) \wedge(A \vee Y)=A \vee(X \wedge Y)=A \vee(X \wedge A) \vee$ $(X \wedge Y)=A \vee C$. This completes the proof.

The converse does not hold; this will be shown by an example after the next theorem.

THEOREM 3. Let $A \in \operatorname{Csub}(L)$. If A is standard in $C s u b(L)$, then ($A]$ is standard in $I(L)$.

PROOF. We shall show that $(A]$ is distributive in $I(L)$, and $(A] \wedge X=(A] \wedge Y$ and $(A] \vee X=(A] \vee Y$ imply $X=Y$ for all $X, Y \in I(L)$, from which the standardness of (A] in $I(L)$ follows [2, Theorem III.3.5].

Because A is distributive in $\operatorname{Csub}(L)$, the distributivity of $(A]$ in $I(L)$ follows from Theorem 1. Let now $(A] \wedge X=(A] \wedge Y$ and $(A] \vee X=(A] \vee Y$ for some X, Y $\in I(L)$. If $A \cap X \neq \phi$, then also $A \cap Y \neq \phi$, because $(A] \wedge X=(A] \wedge Y$ and $(A] \cap X$ contains at least one element from A. By similar argument we see that $A \cap X$ $=A \cap Y$, and thus in this case $A \wedge X=A \wedge Y$ in $\operatorname{Csub}(L)$. When $X \in I(L)$, then $A \vee X=(A] \vee X$ in $\operatorname{Csub}(L)$, whence the equation $A \vee X=A \vee Y$ follows from (A] $\vee X=(A] \vee Y$. Because A is standard in $\operatorname{Csub}(L)$, (3) implies now $X=Y$. When $A \cap X=\phi$, then $X=Y$ follws by (4) from $(A] \wedge X=(A] \wedge Y$ and ($A] \vee X$ $=(A] \vee Y$. This completes the proof.

Now we show that (6) does not imply the standardness of an element $A \in$ $\operatorname{Csub}(L)$. Let L be the well known least modular and nondistributive lattice with elements $0<a, b, c<1$. We put $A=\{a\}$ and show that $X \wedge(A \vee Y)<(X \wedge A) \vee$ ($X \wedge Y$) for all $X, Y \in \operatorname{Csub}(L)$. According to Lemma 2 we may assume that X $\neq L, A \neq Y, X \cap A \neq \phi \neq X \cap Y$ and $X \cap(A \vee Y) \neq \phi . \quad X \cap A \neq \phi$ implies that $a \in X$, and $A \not \ddagger Y$ that $a \notin Y$. Since $X=\{a\}$ contradicts $X \cap Y \neq \phi$, we have $X=(a]$ or [a). If $X=(a]$, then $X \cap Y=\{0\}$, whence $(X \wedge A) \vee(X \wedge Y)=\{a\} \vee\{0\}=X>X \wedge$ $(A \vee Y)$. If $X=[a)$, then $X \wedge Y=\{1\}$, whence $(X \wedge A) \vee(X \wedge Y)=\{a\} \vee\{1\}=X>$ $X \wedge(A \vee Y)$. Hence A satisfies (6). But (a] is not standard in $I(L)$, and thus by Theorem $3 A$ is certainly not standard in $C s u b(L)$.

We call an element $A \in \operatorname{Csub}(L)$ double standard if A is distributive in Csub (L) and satisfies (3), (4) and (7), where
(7) when $A \cap X=\phi$, then $[A) \wedge[X)=[A) \wedge[Y)$ and $(A) \vee[X)=[A) \vee[Y)$ imply $[X)=[Y)$ for all $X, Y \in \operatorname{Csub}(L)$.

Now we can prove
THEOREM 4. Let $A \in C s u b(L)$. A is double slandard in $C s u b(L)$ if and only if $(A]$ is standard in $I(L)$ and $[A)$ slandard in $D(L)$.

PROOF. Let A be double standard. The standardness of $(A]$ in $I(L)$ is already proved in Theorem 3. The standardness of $[A)$ in $D(L)$ can be proved
dually, and in the dual proof (4) is substituted by (7), as easily seen. Thus we concentrate on the converse proof, only.

Let $(A]$ be standard in $I(L), \quad[A)$ standard in $D(L)$ and $X, Y \in \operatorname{Csub}(L)$. Because (A] is then distributive in $I(L)$ and $[A)$ distributive in $D(L), A$ is distributive in $\operatorname{Csub}(L)$ by Theorem 1. Thus it remains to show the validity of (4), (7) and (3). If $A \cap X=\phi$, then $(A] \wedge(X]=(A] \wedge(Y]$ and $(A] \vee(X]=$ (A] $\vee(Y]$ imply $(X]=(Y]$ because $(A]$ is standard in $I(L)$ [2, Thorem III. 3.5]. The validity of (7) is proved dually. Assume now that $A \cap X \neq \phi, A \wedge X=A \wedge Y$ and $A \vee X=A \vee Y$. As one can easily see, these equations imply $(A] \wedge(X]=$ $(A] \wedge(Y],(A] \vee(X]=(A] \vee(Y],[A) \wedge[X)=[A) \wedge[Y)$ and $[A) \vee[X)=[A) \vee[Y)$. Because $(A]$ is standard in $I(L)$, the first two equations imply $(X]=(Y]$, and because $[A)$ is standard in $D(L)$, the remaining two equations imply $[X)=[Y)$. But then $X=(X] \cap[X)=(Y] \cap[Y)=Y$, which proves (3). Accordingly, A is double standard in $\operatorname{Csub}(L)$, and the theorem follows.

Because L is standard in $I(L)$ as well as in $D(L), \quad[I)=L$ is standard in $D(L)$ for every $I \in I(L)$ and $(D]=L$ is standard in $I(L)$ for every $D \in D(L)$. Thus by Theorem 4 every standard ideal I (standard dual ideal D) of L is double standard in $\operatorname{Csub}(L)$. The convex sublattice $\{b\}$ is standard in $C s u b(L)$ if b is standard and dually distributive in L. Indeed, the standardness and the dual distributivity of b in L imply the distributivity of $\{b\}$ in $\operatorname{Csub}(L)$, and (4) holds by the standardness of b in L. If $\{b\} \cap X \neq \phi$, then $b \in X, Y$, and thus $X=\{b\} \vee X=\{b\} \vee Y=Y$, which proves (3). Now we can write a corollary

COROLLARY 2. Every standard ideal (dual ideal) of L is double standard in $C s u b(L)$. An interval $[a, b]$ is double standard in $C s u b(L)$ if and only if b is standard and a dually standard in $L .\{b\}$ is double standard in Csub (L) if and only if b is neutral (i.e. standard and dually standard) in L, and $\{b\}$ is standard in $\operatorname{Csub}(L)$, if b is standard and dually distributive in L.

As well known, in a modular lattice L an ideal (a dual ideal) is distributive if and only if it is standard [2, Theorem III.2.6]. This and Theorems 1 and 4 imply

THEOREM 5. Let L be a modular lattice and $A \in C s u b(L)$. A is distributive in Csub (L) if and only if A is standard in Csub (L). Moreover, A is standard in Csub (L) if and only if A is double standard in $\operatorname{Csub}(L)$.

4. Neutral convex sublattices

At first we like to show a connection between the neutrality of A in $\operatorname{Csub}(L)$ and the neutrality of $(A]$ in $I(L)$.

THEOREM 6. Let $A \in \operatorname{Csub}(L)$. If A is neutral in $\operatorname{Csub}(L)$, then (A] is neutral in $I(L)$.

PROOF. When A is neutral, it is also standard, and thus by Theorem 3 we know that $(A]$ is standard in $I(L)$. The neutrality of $(A]$ in $I(L)$ is proved by showing the dual distributivity of $(A]$ in $I(L)$ [2, Theorem III.3.6]. The dual proof of Theorem 1 shows that the dual distributivity of A in $\operatorname{Csub}(L)$ implies the dual distributivity of $(A]$ in $\operatorname{Csub}(L)$, and thus the neutrality of A in $\operatorname{Csub}(L)$ implies the neutrality of $(A]$ in $I(L)$.

By modifying the definition of double standardness, the concept of double neutrality in $C s u b(L)$ can be defined and an' analogy of Theorem 4 proved. This generalizaion is obvious, and hence we omit it. Also an analogy of Corollary 2 as well as that of Theorem 5 can be easily presented.

As a last observation of this paper we like to give another immediate generalization. When L is a distributive lattice then $(A]$ is distributive in $I(L)$ as well as $[A)$ in $D(L)$ for every $A \in \operatorname{Csub}(L)$. According to Thorem 1 and its dual we see that then $\operatorname{Csub}(L)$ is a distributive $\chi_{\text {lub }}$-lattice. Conversely, when $\operatorname{Csub}(L)$ is a distributive $\chi_{\text {lub }}$-lattice, then $I \vee(J \wedge K)>(I \vee J) \wedge(I \vee K)$ for all three ideals I, J, K of L in $\operatorname{Csub}(L)$. Hence $I(L)$ is a distributive lattice and thus L, too. Accordingly we can write

THEOREM 7. A lattice L is distributive if and only if $C s u b(L)$ is a distributive $\chi_{\text {lub }}$-lattice.

REFERENCES

[1] E. Fried and E.T. Schmidt, Standard sublattices, Algebra Universalis 5(1975), 203 -211.
[2] G. Gratzer, General lattice theory, Birkhäuser, Basel, (1978).

Faculty of Technology
University of Oulu
90570 Oulu 57
Finland

