養殖魚類의 細菌性疾病의 診斷과 對策

田世圭
釜山水産大擧 水族病理學科

Detection and Control of Bacterial Diseases of Cultured Fishes in Korea

Seh－Kyu CHUN
Department of Fish Pathology， National Fisheries University of Pusan，Pusan，608－023，Korea．

This is a comprehensive study for considering the effective treatment and control pro－ gram of bacterial disease occurring in common carp，israel carp，color carp，crucian carp． eel and tilapia by clarifying the causes，mechanism of infection and onset and the diagnos－ tic criteria．

As a first step，the authors investigated the external views，gross and histopathologic findings of diseased fish using 450 infected fishes obtained from various farmer of Korea．

This infection was characterized by hyperemia，hemorrhage and swelling of body sur－ face and fins，congestion of liver，spleen，kidney，inflammation of intestine，hemorrhagic inflammation of various tissues，and necrosis and ulcer of various tissues werr：accompa－ nied in serious cases．

Bacteriologically，Aeromonas hydrophila and Edwardsiella tarda were isoiated from these fishes．Particularly in the regular check on 222 eels， 177 strains were solated as 29.94% of Aeromonas hydrophila， 48.58% of Edwardsiella tarda and 21.47% of Flexibacter columnaris．Flexibacter columnaris was isolated from corroded gill of eels．The identical di－ sease was occurred by innoculating the isolated Aeromonas hydrophila and Edwardsiella ta－ $r d a$ and the identical strains were isolated from infected experimental fishes．

The eels which were diagnosed Aeromonas disease from Kwangiu．Pusan accompanied hemorrhage，swelling of body surface and fins，inflammation of stomach and intestine con－ taining mucous fluids mixed with the pathogens．Color carp and crucian carp which were innoculated with the isolated 5 strins of Aeromomas hydrophila died within 3 or 4 days ac－ companying with the characteristics of Aeromonas disease．

Edward disease was characterized by abscesses of body surface，pus formation with concentration on phagocytes．The size of absecsses increased with progression of disease． There were also various abscesses at internal organ and white nodules appeared in kidney． Histologically，various progressive granuloma were examined without inflammation of inte－ stine．

Columnaris disease of eels showed no hemorrhage except slight white body color．In autopsy，most of internal organs appeared normal and there were no septic odors．The only chatacter was corrosion of gills．

In order to treat these bacterial diseases，infected fishes must bathe in 20 ppm chlora－ mphenicol or kanamycin solution for 1 hour．Besides，medication program in oral ingestion of $75 \mathrm{mg} / \mathrm{kg}$ chloramphenicol per day continuing for 5 to 7 days．

After injecting the formalin treated Aermonas hydrophila antigen into carp，relatively high aggiutination titer showed between 3 weeks and 6 weeks．Though this titer decreased from that time，it was continued for 18 weeks．

In the case of injecting the formalin treated Edwardsiella tarda antigen into tilapia，the titer also increased．

But tilapia which were immersed in the suspension fluid of the formalin treated Ed－ wardsiella tarda showed no increase of the titer．

緒 䜊

内水面에서 어异量 양식하는 目的온 어류量 集約的 으로 사육하여 경졔젹가치量 높이는데 있다．魚類量高密度로 사육하면 곧 環境水가 오염되고，그로 인해 각중 疾病이 流行되어 성장 장해률 일으키거나 죽게 된다．
 죽는 피해가 가장 크다．이둘 원인균은 대부분 양어장 물과 바닥의 뺄에서 檢出되며 病魚의 渴内에서도 分雖된다．Wakabayashi둥（1976）은 뱀장어의 司育水中 에서 Aermonas hydrophila，Edwardsiella tarda 등의 病原菌을 分離同定하였고，Kanai둥（1977）은 양식 뱀장 어의 腸内細菌을 조사한 結果 病原菌属인 Aeromomas sp．，Vibrio sp．，Edwardsiella sp．，Pseudomonas sp．둥이 높은 比率로 검출된다고 하였다．Minagawa등（1983） 은 뱀장어 铝育水와 低質에서 년중 높은 비율로 Ed－ wardsiella tarda가 榆出된다고 하였으며，Ishihara둥 （1982）은 璵境水의 조건에 따라 Edawardsiella tarda 의 발육과 성장에 差異가 있다고 하였다．Wakabaya－ shi둥（1979）은 病魚의 各鲴에서 病原菌이 가장 잘分離된다고 하였으므로，우리나라 각 양어장에서 流行되고 있는 병어률 수집하여 病原菌을 分離同定하였 다．
釜山과 光州地域 양만장에서 週期的으로 病魚䜳 수
 여 치료，像防하게 하였고，연구실로 보내온 잉어，이 스라앨 잉어，틸라피아도 같온 方法으로 試験하였다．

材料 및 方法

1985년 3윌부터 1986년 5윌까지 부산 및 광주 지 역의 병든 양식 뱀장어와 健康한 뱀장어⿱ㅠㄹ 합쳐 222

마리륜 주기정으로 8回에 절쳐 수집하여 墒査하였으 며，또한 이 기간중에 전국에서 本 魚病診断研究室에
診断夆 의뢰 해은 병든 잉어 80 마리，이스라엘잉어 60 마리，틸라표아 90 마리를 합쳐 總計 452 마리를 해부 학적 중상과 병리조직학젹 검사률 하는 동시에 병원 균을 분리 동정하였고，分䧲菌线 病原性試驗，秦骩感受性試験을 실시하였다．

시헙한 모든 병어는 Tricaine methane sulfonate （MS 222），또는 Urethane（Ethlyl carbonate，Junsei chemical Co．）으로 마취한 후 해부하였다（Table 1．）

병원균 분리 병어의 아가미，간장，신장에서 병원균 을 분리하였는데 아가미에서 병원균을 분리하기 위하 여서는 Kanai（1977）의 改良된 Cytophaga培地（Tryp－ tone 0.59 ，Yeast extract $0.5 g$ ，Beef extract 0.29 ，Sod． acetate 0.2 g ，Cal．chloride 0.2 g ．Agar 15．0g，D．W． 10 $00 \mathrm{~m} \ell, \mathrm{pH} .7 .4$ ）를 사용했으며 간장과 신장에서 병원균 울 분리할매는 Nutrient Agar （Difco），BHI Agar（Di－ fco），Tryptic Soy Agar（Difco），SS Agar（Difco）를 사 용하였다．

실헙어의 처리과정은 Kevin（1985）Procedures for the Detection and Identification of certain Fish pa－ thogenes（A．F．S．）에 따라 신장，간장 및 아가미률 무 균적으로 小組宬片曾 取해 배지에 찍고，白金耳로 전 체 면애 고르게 발라서 $25^{\circ} \mathrm{C}, 2-5$ 일간 배양하였다 （Wakabayashi 1979）또한 조직표본용으로 組樴小片 읍 固定液에 보존하였다．Cytophaga agar에서 자란黄色 집락을 따서 운동성조사 및 gram 염색을 한후 다음실험을 위하여 보관혔다．또한 다른 培地에서 자 란 집락도 斜面培地에 보과하면서 gram염색，cytoch－ rome oxidase，운동성，OF 시험을 실시하고，형태 및 생뮬학적，생화학적 성상을 MacFaddin（1980）과 Co－ wan（1974）에 준하여 실시하여 Bergey＇s manual of systematic bacteriology 1卷（1984）과 Cowan（1974）의

Table 1．Sources of diseased fishes used in this study

Name of fish	No．of fish examined	Body weight of fish examined（g）	Source （location）
Common carp Cyprinus carpio	80	$20-800$	Yongsan Kunsan Haman
Israel carp Cyprinus carpio	60	$20-900$	Chunchon Taegu Kimhae
Eel		$18-150$	Kwangju Anguilla japonica
Tilapia Sarotherodon niloticus	90	$10-200$	Myungii

Mannual for the Identification of Medical Bacteria을 참고로 하여 分類 동정하였다．

抗血清 臸照用菊株

일본 동겅대학 Wakabayashi교수로 부터 분양받은 Flexibacter columnaris EK28，T－13，Aeromonas hyd－ rophila A－10，Vibrio anguillarum PB15，SG7701． Pseudomonas anguilliseptica NCMB 1949．Edwardsie－ lla tarda FPC 22，SU703과 일본 히로시마대학 Mu－ roga표수로부터 분양받은－Vibrio anguillarum PT 76 86，PT 77171을 참조 항혀！청제조와 생리실험에 이운 했다．

凝集試險에 使用한 抗血清은 Aeromonas hydrophila A－10．Edwardsiella tarda Sakazaki SU 703，두 菌林 롤 가삭 免绶原으로 하여 Sakazaki（1967）의 方法에 뫄라 만들어진 토끼 免㛖血清이다．凝集素價는 Micro－ titer法으로 測定하였다．潠重量으로 $10^{\circ} \mathrm{cell}$ 도 懸濁液을 난들고 $100^{\circ} \mathrm{C}$ ， 1 時間 加熱한 것을 凝集反惟의 抗原으 호 하였다．

分離菌의 病原性 試险

잉어，이스라엘잉어，맴 장어．틴라피아의 병어에서 본리한 Aeromonas hydrophila $\mathrm{C}-2, \mathrm{C}-4$, Is－4，Is－ 5．E－19의 5菌株头 Edwardsiella tarda E－20，T－6． $\mathrm{T}-10$ 의 3 菌株에 대한 病原性을 调香竗였다．분리가 을 각각 BHI 寒天培地에서 $25 \mathrm{c}, 20$ 시가 培凝한 다음

减菌된 生理的 食監水에 懸浊시켰다．이때의 菌株는 $10^{\circ} \mathrm{CFU} / \mathrm{ml}$ 의 淒度로 하였다．健捸外 20 g 비단잉어， 209 붕어 및 269 틸라피아의 등지느러미 하부 근육에 $0.1 \mathrm{~m} \ell$ 씩 菌液율 按種하였다．

生菌是接種한 후 10 湖의 간은 條件을 유지하게 셜 치된 유리水槽 $(40 \times 50 \times 40 \mathrm{~cm})$ 에 수용하고（ 2 個는 對照）生死如居룰 관한하였다．

留菌用培地에서 배양한 菌液综 performance stan－ dards for Antimicrobial Disc Susceptibility test NC－ CLS의 Agar확산방빕에 따라 조발하고 건조시킨 후

 ㄷ！报制带를 찬찰했나．Flexibater의 병우엔 Cyto－ phaga broth．25C．48時苚 배양한 菌极을 Cytophaga agar에 볼노누 接㮔한 나음 강ㅇ 방법으로 항생제 disc를 훟II 25 C 에서 48 시안 배양한 다욲 21 抑制带 의 직졍율 測运하였다．

免疫試險

案内水槽 12 䛧에 잉어（ 500 y 中去僼重） 10 마리씩

 C노 유지시쳣다．

免疫抗原：병어인 잉어，이스라엘잉어，뱀장어에서分離한 A．hydrophila $\mathrm{C}-2$ ，Is $-5, \mathrm{E}-19$ 를 각각 普通寒天斜面培地에 $25^{\circ} \mathrm{C}, 24$ 時間 培養하고 減菌生理食籃水에 湘菌量 $6 \mathrm{mg} / \mathrm{m}$ 比率로 각각 懸渴 시켰다．이것을 0.5% 의 포르말린을 加하여 $37^{\circ} \mathrm{C}$ ， 48 시간 방치한 후生菌이 없는 것을 확인하고 滅菌生理食監水로 3回 洗棦後 포르말린 死菌抗原으로 하였다（C－2，Is $-5, \mathrm{E}$ -19 抗原）．각 잉어（ 500 g ）에 $0.4 \mathrm{~m} \ell$ 觔肉内 接種하고， 다시 1 주일후에 $0.6 \mathbb{m}$ 를 추가 接種하였다．
採血：Heparin處理한 주사기를 사용하여 잉어의尾動脈에서 採血浢急다．抗原 接種产 3 주일 간격으로採血하여 $3,000 \mathrm{rpm}, 10$ 分間 원십분리한 血清을 频集素䜖의 測定用에 使用郆였다．

氺䋣素㘔线 測定

원심분리하여 얻은 血清을 PBS 로 倍数段階별로 화 석하고 가ㄱㅏㅏ 일정량의 抗原을 加하여 $37^{\circ} \mathrm{C}$ 에 2 시간反應시킨 후 $4^{\circ} \mathrm{C}$ 에서 20 시간 방치하 였다가 凝集 有無量 肉眼的으로 覗察하였다．血浸을 $56^{\circ} \mathrm{C}$ ， 30 分間 加熱 하여 非㗢化시킨 결과 反㕍이 明白하지 않으므로 이 실험에는 非働化하지 않았다．

結果 및 考察

1．病魚线 外部症㸛

병어의 외부 症狀을 敬察하여 Table 2에 나타났다．

Table 2．Revealed frequency of external symptoms of diseased fishes used in this study

Name of fish					
Common carp No．of fish Symptom	Israel carp $\%$	Eel $\%$	Tilapia 222 $\%$	90 $\%$	Total $\%$
Congestion and hemorrhage surface of body	85.0	78.0	75.6	46.2	71.2
Basal part of Caudal fin	82.5	75.0	65.3	26.4	62.3
Basal part of dorsal fin	35.1	38.1	73.1	28.1	43.6
Basal part of pelvic fin	52.4	51.6	74.2	26.2	51.1
Basal part of pectoral fin	16.2	19.1	6.2	0	10.83
Basal part of anal fin	26.1	24.4	0	12.1	15.65
Abdomen	51.1	48.4	26.2	38.4	41.03
Anas	38.6	45.6	38.3	26.4	37.23
Eyelid	18.6	15.2	28.1	58.4	54.73
Protrusion of	18.2	10.2	0	0	7.1
scale exophthalmos	5.6	4.2	12.6	8.6	7.75
Ulcer of skin					

診敏한 병어는 대부분 체표에 充血 또는 出血 즁상이 나타났으며，때로는 지느러미에도 나타났다．부위별로 구분하여 보면 체표의 充血欮 出血이 71.2% 를 차지 했다．일반적으로 체표에 이와같은 症状이 나타나면 지느러미나 항문에도 나타넜다．따라서 部位別로 중 복되는 중상이 많았다．진단한 452마리중 充血과 出血이 보이는 것이 꼬리 지느러미 기부에 62.3% ，등지 느러미 기부에 43.6% ，배지느러미에는 26.2% ，가슴지 느러미에는 10% 정도 나타났다．복부에 充血과 梎血 이 41.03% 나타났고，항문 가장자리에 37.23% 나 나 타났다（Plate 3）．

는ㄲㅍㅜㅜㄹ이나 는가장자뢰에도 34.73% 充血되어 있었

다．이상파 같은 充血両 出血은 病原菌에 의한 질병 중세로 Aeromonas hydrophila나 Aeromonas salmoni－ cida 똔 Pseudomonas anguilliseptica 나 Vibrio anguillarum 둥에 의한 증상이다．툭히 체표면에 궤양 이 형성되는 뱁장어는 대부분 Edwardsiella tarda에 의한 궤양병으로서 간이나 비장에도 궤양이 생겨 죽 게 된다．이와같은 중상이 뱀장어에 12.6% 털라패아 에 8.6% 나 나타넜다．특히 털라피아에 출혈과 충헐을 나타내면서 표피 溃瘍이 많이 나타나느 중상은 새로 운 병으로 추정되었으나 이아같은 症状이 나타나는 털라피아에서는 100% Edwardsiella tarda 균이 분리 되었다（Plate 4）．

Table 3．Revealed frequency of anatomical symptoms of the diseased fishes used in this study

Name of fish					
	Common carp	Israel carp	Eel	Tilapia	Total
No．of fish	80	60	222	90	452
Symptom	\％	\％	\％	\％	\％
Gill ：Fading	52.6	56.2	48.6	50.0	51.85
Liver（Heptopancreas）：					
Congestion	28.6	30.2	18.7	26.2	25.93
Fading	18.8	14.2	15.1	18.2	16.58
Dissolution	10.6	11.2	10.8	11.2	10.95
Spleen ：					
Congestion	32.1	21.2	26.2	18.2	21.9
Swelling	18.2	16.6	11.2	11.8	14.45
Kidney ：					
Congestion	19.2	26.2	11.6	21.6	19.65
Swelling	16.2	19.6	12.6	18.2	16.65
Fading	12.5	11.8	10.2	11.6	11.53
Dissolution	2.6	8.1	6.2	7.1	6.0
Pancreas ：					
Congestion	－	－	18.1	1.2	9.65
Swelling	－	－	12.6	2.6	7.6
Intestine ：					
Congestion	62.6	43.1	28.4	18.6	38.18
Standing mucus	56.2	42.6	18.5	20.1	34.35
Dissolution	21.6	18.2	11.6	10.2	15.4
Abdominal wall ： Congestion and Hemorrhage	32.6	11.6	18.2	11.2	18.4

2．病魚의 解部號的 소견

病魚의 해부학적 소견을 Table 3에 표시하였다．病魚에 따라 약간의 차이는 있으나 병어의 아가미는 51 ． 85% 나 퇴색되어 있었다．이중에는 黄色汚泥롤 지니 며 아가미가 유착되어 있는 것도 포함되며，부분적으 로 푀사된 아가미도 관찰되었다．이와같은 부분을 직 접 Cytophaga agar에 도말하여 배양하면 Flexibacter columnaris균이 분리되었다．간에 있어서도 볗변이 관 찰되었으며 여기서 간의 병변은 잉어나 이스라엘 잉 어의 경우 간장과 쳬장이 합쳐 있기 때문에 肝傽膕约 변화를 말하고 뱀장어와 털라피아는 간 만을 뚯한다． 해부도중에 血管 절단으로 인한 간퇴색을 막기 위하 여 특히 주의하였다．검붉은 색으로 나타나는 울혈도 간 기능에 큰 장애가 되는데 이와같은 현상이 잉어 28.6% ，이스라엘 잉어 30.2% 나 되었다．반대로 퇴색 된 것이 잉어 18.8% ，이스라엘 잉어 14.2% 나 나타났 다．脾萼의 울혈과 부종은 비장의 병변이라 할 수 있 다．脾栕울혈은 잉어 32.1% ，이스라엘 잉어 21.2% ， 비장의 부종이 잉어 18.2% 이스라엘 잉어 16.6% 였다． 신장의 울혈과 부종 및 융해는 신장의 세균성 염중을 뜻한다．

腎裁의 浮腫이 가장 잘 관찰되었는데 잉어 16.2% ， 이스라엘 잉어 26.2% 뱀장어 11.6% ，틸라피아 21.6% 로 뼝변이 심한 편이었으나 신장 피막을 박리시킬때腎荿이 응해되는 것은 炎症이 극심한 것을 뜻한다．

이상과 같은 중상은 모두 병원균에 의한 염중중상 으로서 잉어와 이스라엘 잉어의 경우에는 Aeromonas 균에 의한 질병으로 추정되었으며，뱀장어와 틸라피 아의 경우는 Edwardsiella균에 의한 질병으로 추정되 었다．腸出血이나 장내 점액물도 중요한 중상이지만 장관의 충혈도 섭게 관찰되었다．해부쳈을매 晹에 나 타난 充血 出血의 혼적은 장관의 심한 염중을 의미 한다．장출혈이 잉어의 경우 62.6% ，이스라엘 잉어의 경우 43.1% 나 나타났다．장관내에 점액이 충만된 것 은 잉어 56.2% ，이스라엘 잉어 42.6% 이었다．이 모든 중상온 병의 진행여하에 따라 중상의 차이률 나타냈 다．

3．잉어의 病理組織却的 소견

근육：체표에 出血이 적은 병어의 근육은 근섬유 의 배열이 정상적이며 큰 변화는 없었다．出血이 심한 근섬유는 얽혀서 일정한 배열이 이루어지지 않았다． 또한 근섬유의 부분적인 㙥死와 원형세포 및 세균의集落도 보였다．

간장：혈관의 확장이 쉽게 관찰되고 肝實買細胞 의 배열이 얽혀겨 불규칙하고 세포와 세포간의 간격

이 확장되어 임파세포의 췸윤이 심해지면서 각 실질 세포사이에 적혈구의 모임이 관찰된다．더욱 중상이 심한 잉어는 ㅎㅘㅘ장된 혈ㅍ4에 혈구가 고이고，肝責質細胞가 일 -1 러지면서 핵농축과 핵붕괴가 일어난다．때 로는 간세포의 괴사도 관찰된다．

신장 ：잉어의 신장 간질에 원형세포가 침윤되고， 세뇨관의 학장과 어축이 십해지며 세뇨관 상피 세포 의 핵농축과 핵붕괴가 일어나고 있다．

비장：잉어의 脾裁은 動胝瘤量 혛성하고，脾铕를 중심으로 임표계 세포와 적혈두가 충만되면서 세포의 괴사가 싞해진다．잉어나 이스라엘 잉어의 장기에서 불 수 있는 이와 같은 비장조직의 볗변은 Aeromonas hydrophila 균이 분리된 장기에서 더욱 심하였는데 이 는 Aeromonas hydrophila 에 의한 병리조직의 변화라 추정된다．

4．뱀장어의 病理組織䁷的 소견

근육 ：근섬유에는 이상이 없으나 피하지방조직 의 혈관에 적혈구가 충만되고 진피에도 출혈이 심했 다．

간장 ：뱀장어의 간세포는 脂肪㢣性을 일으키고類洞内에 好中球 및 큰단핵세포의 침윤 번식이 심해 지면서 문맥에 불완전 폐왜성 化膡性血烃이 나타난다．

신장 ：뱀장어의 신장에는 크고작은 膻瘍이 관찰 되었다．血栓局所의 주위에 있느 浩血組織에 好中球가 모여있으며，그 一部는 식讠ㅜㄴ상과 細菌의 세포내 중식 상이 보인다．이와같은 好中球血栓과 미소농창이 탆이 발견된다．

이와 같은 현상온 틸라피아에서도 발견 되었다．뱀 장어에서 分離站 Edwardsiella tarda 菌을 틸라피아의 둥지느러미 하부근육에 접종한 졀과 털라피아에 Ed－ ward병이 발샘되었다．그 틸라피아의 신장 조직을 관 찯하여 뱀장어 신장과 같은 병변을 보았다．신장의造血組織虽 中心으로 크고 작은 䍝疡이 형성되었다． 매로는 더욱 심해져서 壞死楽가 形成되고 나아가서는肉芽畽이 形成되었으며 센工工科과 絲球體》지지도 壞死 시쳤다．腎嘪質細胞도 樊性되어 㙹死된 것도 나타났 다．

비장 ：⿻ㅑㅁ장어의 비장에도 크고 작은 朖㾺이 산발 적으로 관찰되었다．이 농창은 好中球의 침윤이 적으 며 水庫을 일으킨 모양이다．縣䐵揊는 細䋞細胞가 유 리되어 있으며 多核巨大細胞도 맟이 나타났다．때로는 이들 세포가 壊死되고 융해되며 䣙壊된 부분도 관할 되었다．

뱀장어에서 分離한 Edwardsiella tarda菌을 털라피 아 둥예 접종한 후 Edward 뼝이 발생된 틸라피아의

비장조직을 보면 비수를 중심으로 병소가 형성되며， 이 병소가 괴사되면서 肉芽腫이 형성되었다．

그 가장자리의 비수는 空胞化 되었으며 때로는 變性 赤血球咶 血鐡素가 나타나면서 많은 병소를 형성 하는 것을 관찰할 수 있었다．

5．金山－光州地域의 美殖 뱀장어의 細薗性疾病

1985년 3월부터 1986년 5월까지 부산，강주 지역의 양식 뱀장어률 주기적으로 수집해，총 222마리를 조 사하여 병원균을 분리하였다．광주지역 $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$號他 및 부산지역 $\mathrm{E}, \mathrm{F}, \mathrm{G}$ 號池의 뱀장어는 병든 것을調査하였ㄱ工工 명지 뱀장어는 대조로 健康한 것올 調査 하였다（Table 4）．

Table 4．Seasonal distribution of bacterial infections among pond cultured Eels in 1985 to 1936

Date	Pond	Fish No．	Examined Mark			Fish infectied with						
						A．hydrophila		E．tarda		F．columnaris		not indentified
1985												
6，Mar．	A	3	1	2	3	2		3				
	B	3	4	5	6	5		5.	6	6		
	C		7	8	9	7.	8	7.	8			
	D	3	10	11	12	10.	11	11.	12			
10，Apr．	E	3	13	14	15	13	14	14				
	F	3	16	17	18	16,		17.	18	17		
	G	3	19	20	21	19		20		21		
6．May．	H	3	22	23	24			22				
	I	3	25	26	27			26	27			
	J	3	28	29	30							
18，May．	A	3	31	32	33	31.	32	32		33		31
	B	3	34	35	36	35.	36	34,	36	34		
	C	3	37	38	39	37		37，	39	39		
	D	3	40	41	4.2	41		42		39		
10，Jun．	E	3	43	44	45			43.	44	44		
	F	3	46	47	48			47		48		
	G	3	49	50	51			49,	51	51		
25，Jun．	H	3	52	53	54							
	I	3	55	56	57							
	J	3	58	59	60							
6，July	A	3	61	62	63	62		62,	63	63		
	B	3	67	68	69			64	66	65	66	
	C	3	67	68	69			0		68,	69	
	D	3	70	71	72			71，	72	71		
18，July	E	3	73	74	75			74.	75	74		
	F	3	76	77	78			76,	77			
	G	3	79	80	81			79,	80			
1，Aug．	H	3	82	83	84							
	I	3	85	86	87							
	J	3	88	89	90							
25，Aug．	A	3	91	92	93	92			93			
	B	3	94	95	96	95			95	96		

광주 뱀장어는 비널하우스를 이용한 温室加温他에 서 飼育되며，水質은 植物性 풀랑크톤에 의한 정화기 능을 가졌으며 매일 약 $1 / 3$ 량의 환수를 하고 있었다． 이와같은 飼育方法은 植物性 플랑크톤의 鼻에 따라．日照시간에 따라 정화기능에 큰 치이룰 나타냈다．여 름철 장마기에는 물변화가 심하여 암모니아 아질산이 중가됨으로 질병이 많이 발생되었다．한편 부산의 뱀 장어는 生物膜올 이용한 循環濾過式加温池에서 飼育 되었으며，水質은 回轉员板에 번식된 질산균에 의하여 정화되었고，日光올 차다하여 植物性 풀랑크톤의 번 식은 억제되었다．그러나 여기에서도 뱀장어 질병은 유행되었다．그 이유로서는 여과되지 않은 河川水롤 바로 铝育池에 注入하고，병든 種苗量 구입하여 양식 하고 있기 때문이었다．Minagawa둥（1983）．Wyatt등 （1979），Wakabayashi둥（1976）은 水中에서 각종 병원 균을 敛出하고 Kanai둥（1977），Park（1983），Takaha－ shi등（1984），Wakabayashi둥（1973）．Sugita등（1979）， Ugajin（1979）등은 뻘 및 어류의 장내에서 각줗 병원 균을 분리하였다．우리나라의 경우 種苗를 구입하여 사육하게 되면 대부분 질병 때문에 대량 폐사시키는 경우가 있다．그 이유로서 대부분의 種苗에서 병원균 과 기생충이 검출되기 때문이다．외관상 건강하게 보 이지만 옮기고 난 뒤 1 주일에서 1 개월만에 반드시 질 병이 방생된다．환경이 바낌으로서 잠복헸던 병원균이 번식하기 때문으로 추정된다．또한 잠복된 기생충은 병원성 세균의 번식올 촉진시켜 준다．따라서 부산 양만장의 뱀장어는 년중 질병이 유행된 것으로 추정 된다（Table 4）．

대조로 조사한 嗚旨 볌장어는 回轉圆板式 生物膜을利用한 循環瀘過加温 飼育池只서 完全 여과된 河川水 만을 사용하여 매일 $1 / 10$ 량을 환수하였다．

河川水를 여과하는 이유는 주입하고 있는 사육수가 수문이 설치되어 농업용수로 사용되는 湖木와 같은 물로서 이 水中에는 각중 병원성 세균과 기생충이 쉽 게 檢出되었기 때문에 3 m 의 모래（ $2 \sim 3 \mathrm{~mm}$ ）層을 붕과 시켜 여과된 물을 사용하였다．이 양어장의 뱀장어에 서는 병원균이 거의 검출되지 않았다．
모든 뱀장어는 70% 알콜 스폰지로 體表面올 닦아 낸 후 Urethane（A／S SYNTHETIC）으로 마취시킨후 해부하여 아가미，간，신장 순으로 小組織片을 分離培地에 찠어서하여 도말 확산 하혔다．

자라난 집락은 특색있는 것율 따서 再次分啹한 결 과 Aeromonas hydrophila 53菌株（ 29.98% ），Edward－ siella tarda 86菌株（48．58\％），Flexibacter columnaris 38 菌株（ 21.47% ）가 分離되었다．分離된 총 177 菌株와 동정되지 못한 1菌株을 합치면 178 菌株가 되는데，동 정하지 못한것은 분리도중에 오염된 것으로 보고 여

기예서는 졔외하였다．또한 이 조사기간 중 뱀장어에 서는 Vibrio anguillarum 과 Pseudomonas anguillisep－ tica는 분리되지 않았다．

광주지역 $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ 號池의 뱀장어 96 마리에서 분 리된 병원가은 A．hydrophila 35 菌株 (36.46%) ，E．ta－ $r d a 50$ 菌株（ 52.08% ），F．columnaris 22菌株（ 22.92% ） 였다．이중에는 11% 의 混合感染이 있었다．

부산지역 E，F，G 號池의 뱀장어 63 마리에서도 A ． hydrophila 18菌株（ 28.57% ），E．tarda 33菌株（52．38 $\%$ ），F．columnaris 16 菌株（ 25.40% ）가 分離되었다．여 기에서도 6.45% 의 混合感染이 나타났다．嗚旨 H, I ， J 號池의 健康한 뱀장어 63 마리중에서 5 월에 E．$t a$－ $r d a$ 가 3 마리에서 3 菌株 (0.48%) 만이 분리되었다．A ． hydrophila와 F ．columnaris는 분리되지 않았다．그 이 유로서，사용되는 모든 물은 여과된 젓울 사용했기 때문이라 추정된다．분리된 E．tarda는 먹이인 실지렁 이로 부터 갆염뒨 것으로 쿠정되며 5월에 14 일간 抗生物湼을 투여하여 치유시쳤다． 1 이후에는 병원균이 분리되지 않았다．

광주지구와 부산지구 에서는 매년 $10 \sim 20 \mathrm{~g}$ 의 뱀장 어 黑子인 種苗울 구입하여 成鮍으로 성장시키는데種苗때 이미 각종 병원군에 감염될 것을 모르고 구입 하여 사육한 예와 장기간에 걸쳐 이와같은 병원균이 양어장에 정착되어 戣存하다가 새로운 종뵤가 들어오 면 곧 감염되는 두가지 감염 경로롤 생나할 수 있었 다．이것을 입중하는 것으로서 대조로 택한 명지 양 어장은 아직까지 한번도 혹자인 종료를 구입하여 사 육한 적이 없으며 매년 실뱀장어에 실지렁이를 먹여 사육하다가 사육지로 읆겨 배합사료로서만 사육하였 고 사육수는 여과시켜 사용함으로서 병원균의 침입이 없었던 것으로 추정된다．
Table 5에 나타난 것과 같이 광주나 부산지역의 뱀 장어는 세규성질병이 심한 편이미 A．hydrophila와 E． tarda 균을 한마리의 뱀장어에서 돟시에 분리된 예가 되었으며 E．tarda와 F．columnaris간이 같이 분리된 예와 A．hydrophila와 F．columnaris가 동시에 분리되 는 경우도 있었다．굥주산 뱀장어에 있어서 A．hydro－ phila와 E．tarda가 혼합감염된 것이 가장 많아 14.58 \％나 되었다．한 마리의 병든 뱀장어에서 3 種의 병원 균이 분리될 것이 2 例나 있었다．반면 명지에서는 혼 합감염된 것은 한例도 없었다（Table 5）．

실뱀 장어의 초기 먹이로서 실지렁이를 투여하는 한 E．tarda병의 근절은 기대하기 힘든 것으로 생각된다．

6．分醮苜的 病原性

분리균중 $\mathrm{C}-2$ 가 가장 강한 病原性을 나타냈다

Table 5．Incidence of the mixed infections

Fish pond	No．of fish esamined	A．hydrophila + E．tarda	E．tarda + F．columnaris	A．hydrophila + E．tarda	A．hydrophila E．tarda + F．columnaris
Kwangju （A，B．C，D）	96	$14(14.58 \%)$	$11(11.45 \%)$	$4(4.16 \%)$	$2(2.09 \%)$
Pusan （E，F，G）	63	$5(7.93 \%)$	$9(14.28 \%)$	0	$1(1.58 \%)$
Myungji （H，I，J）	63	0	0	0	0
Total	222	$19(8.56 \%)$	$20(9.0 \%)$	$4(1.8 \%)$	$3(1.35 \%)$

（Table 6）．
10^{8} cells $/ 10 \mathrm{~g}$ 接種한 비단잉어 10 마리가 모두 96 시간 만에 9 마리가 죽었다．또한 이스라엘 잉어에서 분리한 Is -4 를 같은 수로 接種한 붕어에서도 9 마리가 죽었 는데 Is -5 를 接種한 붕어는 6 마리만 죽었다．뱀 장어 에서 분리한 E－19는 더욱 약해서 4 마리만 죽었다 （Table 6）．

分離菌侏中 예비실험을 퉁하여 毒力이 강하다고 추 정되는 菌株를 택하여 病原性 시험을 실시 하였느데 Aeromonas hydrophila 菌株에도 $40 \sim 100 \%$ 의 폐사률 의 차이롤 나타냈다．죽은 비단잉어와 붕어는 심한潰場올 일으졌다．죽지 않은 接種魚는 接種部位．가 膨隆되거나 그 가장자리가 出血性疾病으로 나타나다가 시일이 경과됨에 따라 서서히 치유되었나（Plate 1，2）
$\mathrm{E}-20, \mathrm{~T}-6, \mathrm{~T}-10$ 올 각각 $10^{8} \mathrm{cell}$ 씩 接種한 붕어 는 72 시간만에 6 마리 죽었다．T－6을 같은 수 接種한 틸라피아는： 120 시간만에 8 마리 죽고，$T-10$ 을 같은 수 接種한 털라피아는 168 시간만에 6 마리가 죽었다 （Plate 5，6，7）．
Edwardsiella tarda는 뱀장어나 털라피아에는 강한病原性首 나타내나，붕어에느，両原性이 약한것 같다． 병어인 잉어나 이스라옐 잉어에서도 Edwardsiella ta－ $r d a$ 가 분리되지 않았다（Table 7）．

生菌接種 48時間後：細菌接種 部位表面이 腫大되 고 비늘이 일어서며．體側 筋肉内线 注射部位가 壞死 된다．生菌接種部位에는 細菌이 㙁殖되고，근섬유가樊性되고 기사되어 융해된다．肝嘰에서는 炎病性 細胞内 細菌 증식이 보인다．肝細菢는 壊死된다．脾臟에

Table 6．Pathogenisity of the isolated strains to carp fishes（Dose 10^{4} cells $/ 10 \mathrm{~g}$ fish body weight，intramuscula injection）

Strains	Date 1985，	Name of fish examined	Number of fish died／tested	Mortality (\%)	Averge time to death（hr．）
C－2	Jun．	Color carp	10／10	100	96
C－4	Jun．	Color carp	9／10	90	98
Is -4	Jun．	Carassius carassius	9／10	90	145
Is -5	Jun．	Carassius carassius	9／10	90	126
E－19	Apr．	Carassius carassius	4／10	40	160
E－20	Apr．	Carassius carassius	6／10	60	72
T－6	July．	Tilapia	8／10	80	120
T－10	July．	Tilapia	8／10	80	168

Table 7．Aeromonas，Edwardsiella，Columnaris strains used in this study

Strains	Organisms	Matter sampled
$\mathrm{C}-2$	Aeromonas hydrophila	Carp
$\mathrm{C}-4$	Aeromonas hydrophila	Carp
$\mathrm{C}-7$	Flexibacter columnaris	Carp
$\mathrm{Is}-4$	Aeromonas hydrophila	Israel carp
$\mathrm{Is}-5$	Aeromonas hydrophila	Israel carp
$\mathrm{Is}-8$	Flexibacter columnaris	Isreal carp
$\mathrm{E}-19$	Aeromonas hydrophila	Eel
$\mathrm{E}-20$	Edwardsiella tarda	Eel
$\mathrm{E}-21$	Flexibacter columnaris	Eel
$\mathrm{T}-6$	Edwardsiella tarda	Tilapia
$\mathrm{T}-10$	Edwardsiella tarda	Tilapia
$\mathrm{T}-16$	Flexibaiter columnaris	Tilapia

있어서도 細菌增殖을 수반한 櫰死病巢가 나타난다．腎腤咞 있어서도 細菌增殖이 심하여 炎症泩細胞에 의 한 賀食現像斗 壞死巢가 보인다．

生菌接種 96時間 後 ：細菌接種部位는 畽大되고，潰傷을 形成站다．生菌注射部位绊 䇗肉組織은 融解되 고 膿樣物이 고인다（Plate 7）죽은 틸라피아의 肝戬，
 둘러싼 壞死巢가 보인다．이것울 外側에서 $2 \sim 3$ 層으 로 둘러싼 上皮細胞層이 形成되어 肉芽腫이 形成된다 （Plate 8．9）．

7．Aeromonas hydrophila

분리균 $\mathrm{C}-2, \mathrm{C}-4$, Is－4，Is－5，E－19의 형태를
Table 8．Morphological characteristics of the isolates

	Strains				
Characteristics	C－2	C－4	Is－4	Is－5	E－19
Cell－form	Short rods				
Size	$1.9-2.7 \times 0.8-1.3 \mu \mathrm{~m}$				
Gram stain	Negative				
Motility	Active				
Flagella	A single polar flagellum				
Acid fast	Negative				
Agar colonies	Circular，light yellow，moist． glistening，slightly raised				
Broth culture	Well－grown，muddy				

Table．8에 표시하였다．모두 Gram 陰性이며，單稹毛 로서 활발히 운동하는 短杆菌으로서 크기는 1．9～2．7 $\times 0.8 \sim 1.3 \mu \mathrm{~m}$ 였다．
Nutrient agar상에서는 모두 25ㄷ．24시간만에 1 mm 직경의 집락울 형성하고， 48 시라 후에늘 2 mm 전후의 집락으로 싱장되었다．집락은 iFI開形이고，가장자리는圆滑站고，훌선부가 약간 융기되고 늡윤성 광택이 있 다．배양초시에드 무색 투명하나 신ㄴㅇㅣ 지남에 따라 연한 홯색을 떤나（Table 8）．

生化嚳的 性狀

잉어에서 분리한 $\mathrm{C}-2$ 와 $\mathrm{C}-4$ 는 같았으나 이스라 엘 잉어와 뱀 장어에서 분리한 Is -4 ．Is $-5, \mathrm{E}-19$ 는 약간의 차이가 있었다．오히려 Is $-4, \mathrm{Is}-5, \mathrm{E}-19$ 늘 유사한 성상을 나타냈다．Indole반웅에 있어서 $\mathrm{C}-2$ ， $\mathrm{C}-4$ 는 陰性인네 비하여 Is -4, Is $-5, \mathrm{E}-19$ 는 陽性 이었다．MR실ㅎㅓㅝ은 Is -4 은 \pm 인네 비하여 $\mathrm{E}-9$ 는 陰性이었다．암모니아 생산에 있이서도 $\mathrm{C}-2, \mathrm{C}-4$ 는陽牲인데 비하여 IS－4 IS－5，E－19는 除性을 나타 냈다．Mannose 분해에 있어서도 $\mathrm{C}-2, \mathrm{C}-4$ 는 酸만 을 生産勍으나 IS－4，IS－5，E－19늘酸과 Gas를 生産하였다．Trehwlose Dextrin Starch 분해에 있었서도 C－2，C－4는 酸만을 生産하는데 비하여 IS－4，IS－ 5，E－19는 酸欮 Gas量 生産荆다．따라서 $\mathrm{C}-2, \mathrm{C}-4$ 의 性狀이 유사하고 IS－4，IS－5，E－19 性狀이 유 사하였다（Table 9）．

生物县的 性狀

분리균의 生物學的 性狀올 Table 10 에 표시하였다．

Table 9. Biochemical characterictics of the isolates

Characteristics	Straoms				
	C-2	C-4	Is -4	Is -5	E-19
VP reaction	+	$+$	$+$	$+$	+
MR test	+	+	\pm	$+$	+
Indole production	-	-	$+$	$+$	+
IPA reaction	-	-	-	-	-
$\mathrm{H}_{2} \mathrm{~S}$ production	+	+	$+$	$+$	$+$
O-F test	F	F	F	F	F
Gelatin hydrolysis	+	+	+	+	+
Nitrate reduction	+	+	$+$	$+$	+
MR reduction	$+$	+	$+$	$+$	+
Litmus milk	C	C	C	C	C
Catalase	+	$+$	+	$+$	$+$
Oxidase	$+$	$+$	+	$+$	$+$
Cytochrome oxidase	+	$+$	$+$	$+$	$+$
Ammonium productiom	+	+	+	+	+
Urease	+	+	--	-	-
KCN test	-	-	-	-	-
Arginine hydrolysis	+	+	+	$+$	+
Arginine decarboxylase	+	+	+	+	+
Lysine decarboxylase	-	-	-	-	-
2,3-butandiol dehydroge nase	$+$	+	+	$+$	+
Malonate utilization	-	-	-	-	-
D-tartarate utilization	-	-	-	-	-
Hemolysis	+	+	+	$+$	+
Cleavage of carbohydrate :					
Glucose	A	A	A	A	A
Fructose	A	A	A	A	AG
Rhamnose	-	-	-	-	-
Arabinose	-	-	-	-	-
Xylose	-	-	-	-	-
Galactose	A	A	A	A	AG
Mannose	A	A	AG	AG	AG
Lactose	-	-	-	-	-
Saccharose	A	A	A	A	AG
Maltose	A	A	A	A	AG
Trehalose	A	A	AG	AG	AG
Cellobiose	-	-	-	-	-
Raffinose	A	-	-	-	-
Glycogen	A	A	A	A	AG
Dextrin	A	A	AG	AG	AG
Starch	A	A	AG	AG	AG
Inulin	-	-	-	-	-

Mannitol	A	A	A	A	A
Inositol	-	-	-	-	-
Sorbitol	-	-	-	-	-
Addnitol	-	-	-	-	－
Glycerin	A	A	A	A	AG
Dulcitol	-	-	-	-	-
Salicin	A	A	A	A	AG

$\mathrm{F}:$ fermentation， $\mathrm{C}:$ coagulation， $\mathrm{A}:$ acid， $\mathrm{G}:$ gas
Table 10．Biological characteristics of the isolates

Characteristics	C－2	C－4	Strains Is－4	Is－5	E－19
McConkey agar	+	+	+	+	+
SS agar	+	+	+	+	+
NaCl range	$0-4 \%$	$0-4 \%$	$0-4 \%$	$0-4 \%$	$0-4 \%$
pH range	$5-9$	$5-8$	$5-8$	$5-8$	$5-8$
Temperature	$10-37^{\circ} \mathrm{C}$				

모든 菌株는 MacConkey寒天培地와 SS 寒天培地上에 서 자라났다．食監浱度도 4% 까지 발육되었으며 톡히 $0 \sim 2 \%$ 까지 잘 자란다． pH 도 다같이 $5 \sim 8$ 범위에서 발육되었다．발육온도는 $25 \sim 35^{\circ} \mathrm{C}$ 까지 잘 자라⼥으나 발육 가능온도는 $10 \sim 37^{\circ} \mathrm{C}$ 로 측정되었다（Table 10）．

血溥學的 性狀

동경대학에서 분양받은 A．hydrophila A－10 抗血清에，分離한 抗原 $\mathrm{C}-2, \mathrm{C}-4$, Is－4，Is－5，E－19의凝集反應을 본 결과， $\mathrm{C}-2, \mathrm{C}-4$ 에는 320 倍，Is -4 ， Is－ 5 에서는 160 倍， $\mathrm{E}-19$ 에서는 640 倍에서 凝集됨으 로서 모두 A．hydrophila 菌種임을 확인할 수 있었다． 분리균의 형태，생물 및 生化學的 性狀을 Bergey＇s manual of Determinative Bacteriology 1巻（1984）과， Cowan and Steel＇s Manual for the Identification of Medical Bacteria（1974）예 기재둰 것과 비교한 결과 Aeromonas hydrophila로 同定할 수 있었다．

8．Edwardsiella tarda

形魂 및 生物䁷的 性狀

분리균의 크기는 $0.5 \sim 1.0 \times 0.3 \sim 0.5 \mu \mathrm{~m}$ 의 短杆菌으 로서 Gram 陰性인 周毛性인 周毛性吿毛总 지니며 활 발한 運動性이 있었다．BHI 塞天培地에서 $25^{\circ} \mathrm{C}, 24$ 시 간 만에 0.5 mm 의 colony가 形成되고， 48 時間만에 1 mm의 正圆形이고，中心部가 隆起된 灰白色 colony가

성장된다．MacConkey寒天培地와 SS 寒天培地에서 자 라나 BTB Teepol 寒天培地에세는 자라나지 않았다．發青温度는 $10 \sim 40 \mathrm{C}$ 이지만， $20 \sim 30 \mathrm{C}$ 에서 가장 잘 자 랐다． pH 는 $6.0 \sim 9.0$ 범위에서 자라날 수 있으나， 7 ． $2 \sim 7.4$ 에서 가장 잘 자랐다．食鯧漕度는 $0 \sim 2 \%$ 까지 자랄 수 있으나 2% 이상에서는 자라지 못했다（Table 10）．

生化晲的 性狀

분리균의 catalase反鼎은 陽性이었으며，oxidase反應 은 陰性이었다．포도당을 발효적으로 이용하고 가스를生産하였다．
 전분과 arginine을 加水分解하지 않으며，glucose，fru－ ctose，mannose，galactose 및 glycerol올 分解姑여 酸 과 가스률 生産한다（Table 11）．

血清睤的 性狀

동경대학에서 분양받은 Edwardsiella tarda SU 703菌을 포르말린으로 죽 인것을 토끼에 接種하여 얻은抗血清에 대한 凝集價는 E－20이 320培，T－6가 620培의 凝集素價邕 나타냈다．이상의 결과를 棕合하여 보면 다음과 같다．

Bergey＇s manual 1巻（1984）에는 Edwardsiella ta－ $r d a$ 를 다음과 같이 定義하였다．즉 周毛性인 杆菌으로

Table 11. Comparision in characteristics between the isolates from diseased Eels and Tilapia(Edwardsiella tarda)

Characteristics	Isolates		E. tarda SU 703
	E-20	T-6	
Gelatin	-	-	-
Litmus milk	-	-	-
Indole	+	$+$	+
Hydrogen sulfide	$+$	$+$	+
Nitrate reduction	$+$	+	+
VP reaction	-	-	-
MR test	+	+	+
Urease	-	-	-
Catalase	+	+	+
Cytochrome oxidase	-	-	-
Hugh-Leifson test	F	F	F
KCN test	-	-	-
Tributyrate digestion	-	-	-
Starch hydrolysis	-	-	-
Ammonium	\cdots	-	-
Lysine decarboxylase	+	+	+
Arginine decarboxylase	-	-	-
Ornithine decarboxylase	$+$	+	+
Kauffmann-Petersen broth :			
Citrate	+	+	+
Tartrate	-	-	-
Mucate	-	-	-
Citrate utilization(SIMONs*)	-	-	-
Malonte utilization(EWING's)	-	-	-
Gas from glucose	$+$	+	+
Acid from:			
Glucose	+	+	+
Xylose	-	-	-
Arabinose	-	-	-
Fructose	+	+	$+$
Galactose	+	+	+
Mannose	+	+	+
Sucrose	-	-	-
Maltose	-	-	-
Glycerol	+	+	(+)
Mannitol	-	-	-
Inositol	-	-	-

英膜이 없으며 炭素源으로서 malonate와 citrate를 利用하지 않으며，TSI 寒天培地에서 $\mathrm{H}_{2} \mathrm{~S}$ 롤 생산한다． Indole 를 生産하고，lysine 및 ornithine 을 脱炭䤑化시 켜며 많은 菌株는 mannito을 발효하지 않는다고 하 였다．또한 Cowan and Steel＇s manual 第2版（1974） 에서도 Edwardsiella tarda를 다음과 같이 定義하였다．

運動性이 있는 Gram 隂性 杆菌으로서 好氣性 또는通性 䋛氣性이다．Catalase 陽性，oxidase 陰性이며， 포도당올 발효적으로 분해한다．TSI寒天培地에서 H_{2} S를 生産한다．분리균은 Table 11 에서 表示한바와 같 이 모두 이 定義에 充足되었다．血清學的 性狀에 있 어서도 이미 알고 있는 E．tarda 抗血清과 凝集뒴으 로서 이들 分離菌을 Edwardsiella tarda로 동정하는 것이 타당하다고 생각된다．
Edwardsiella tarda는 뱀둥의 장내세균으로 알려져 있으며 사람이나 가축에서도 점출된다．양식 뱀장어 에는 오래전 부터 에드와드병으로 알려져 왔으며 이 것은 실지렁이를 통하여 감염되는 것으로 알려져 있 다．

9．Flexibacter columnaris

温室加温水槽에서 制育되고 있는 뱀장어는 초여름 에 아가미병으로 대량 폐사되는 경우가 많다．1985년 도 전국적으로 아가미병이 유행되어 큰 피해를 입였 다．광주지구의 경우 낮과 밤의 수온차가 심한 5월에 대량폐사 되었는데， 1 차적인 원인은 장기간에 걸쳐 암모니아나 아질산이 축적되어 있는 상태에서 2 차로 수온차이가 심해져서 F．colwmnanis균이 대량번식되 어 폐사가 일어난 것으로 추정된다．

아가미병에 감염된 뱀장어는 힘없어 수면이나 못 가장자리를 떠돌아 다니거나，모서리에 정지하고 있 다．그러나 외관상 아무런 병변을 볼 수 없으며 다면 체색이 회게 보이며 아가미가 약간 오목하게 함몰된 것과 같은 느낌이 든다．이 부위를 손으로 누르면 피 가 흔합되 점액이 나온다．

이와 같은 병어의 아가미 뚜껑을 절개하여 보면 홍 도색 아가미 위에 污泥가 고여 있고 황잘색의 粘質物 이 보이기도 하며 아가미 일부가 부식된 것도 볼 수 있다．반면 내장의 변화는 보이지 않으며 일반 세균 성질병에서 볼 수 있는＊症도 없었다．먹이도 정상적 으로 먹기 때문에 外部診断만으로는 진단하기 힘든다．

形憼 및 生物章的 性状

분리균은 $0.3 \sim 0.5 \mu \mathrm{~m}$ 의 넓이와 $5 \sim 15 \mu \mathrm{~m}$ 의 길이률 지닌 진 杆菌으로서 gram飨性이며 潅毛는 없지만 菌䯈의 한끝을 고정시키고 다른 쪽은 屈曲운동을 하였

다．Cytophaga寒天培地에서 $25^{\circ} \mathrm{C}$ ， 48 時間만에 木権根狀의 가장자리量 지닌 黃色 colony가 形成되었다．발 육온도는 $15 \sim 32^{\circ} \mathrm{C}$ 이지만 $25 \sim 30^{\circ} \mathrm{C}$ 에서 가장 잘 자랐 다．臨分觓禇에 있어서도 0.5% 까지 자랐다．E－21，C -7 만은 1% 까지 자랐으나，나머지는 1% 에서는 자라 지 않았다（Table 12）．

生化楽性㸜

분리균의 生化學的性狀을 Table 12에 表示하였다．
Catalase，cytochrome oxidase陰性이며， $\mathrm{H}_{2} \mathrm{~S}$ ，indole 은 生産하지 않았다．Casein，gelatin을 分解하며，cel－ lulose는 分解하지 않았다．Glucose，fructose를 分解什 며 lactose，galactose，sucrose量 分解하지 않았다． Maltose，cellobiose melibiose를 分解하고 arabinose xylose률 分解하지 않았다（Table 12）．
이상의 결과률 종합하면 다음과 같다．
Bergey＇s manual 第1巻（1984）에 의하면 Flavobac－ terium第으로 分類하는 것이 타당하다고 생각되나， Wakabayashi，Egusa，and Fryer（1980），Colwell（19 69），Wakabayashi（ 1980）．Wakabayashi and Egusa（ 19 74），田•孫（1985）등에 따르면 Flexibacter columnaris 로 同定하는 섯이 타당하다고 인정되었다．

10．薬制感受性

잉어，이스라엘잉어，뱀장어，틸라피아에서 분리한 C－2，C－4，Is－4，Is－5，E－19，E－20，T－6，T－10， A．hydrophila와 E．tarda에 대한 藥劑感受性을 Table 13 에 나타냈다．
Penicillin에 대해서는 侢性을 나타내는데 比하여 chloramphenicol와 nalidisic acid에 대해서는 강한 感受性올 나타냈다．Tetracicline 과 furazolidone에 대해 서는 弱한 感受性을 타나냈는데，이는 각 양어장에서 이와 같은 禁剤률 빈번히 使用竔기 때눈으로 생각된 다（Table 13）．
Flexibacter columnaris의 항생체에 대한 감수성을 EIKEN과 SHOWA製의 disk를 샤용하여 실험한 結果 쿨 Table 14 에 나타냈다．Flexibacter는 standard me－ thod에 의한 Muller Hinton배지를 사용하는 것보다 Cytophaga寨天培地䜳 사용하니 더욱 잘 자라났으므로 Cytophaga寒天培地量 이용하였다．
Penicillin에 대해서는 雱性을 지니나，erythromycin， chloramphenicol，tetracycline，nalidixic acid에 대해서 는 强한 感受性을 나타냈다．Kanamycin과 gentamy－ cin，furazolidone에 대해서는 弱한 感受性울 나타냈다 （Table 14）．

특히 藂㓯感受性에 대해서는 變動이 심한 것을 관 찰할 수 있었다．Tetracycline에 感受性이 높은 結果를

Table 12. Summary of characteristics of Flexibacter columnaris isolated from eels, carps, tilapia and comparision with closely related organisms

Characteristics	Isolates				F. columaris
	E-21	C-7	Is-8	T-10	T-13
Gram staining Shape	slender rod $\begin{array}{r} 0.3-0.5 \\ \times 6-15 \end{array}$	slender rod $\begin{gathered} 0.4-0.5 \\ \times 5-15 \end{gathered}$	slender rod $\begin{aligned} & 0.3-0.5 \\ & \times 5-16 \end{aligned}$	slender rod $\begin{aligned} & 0.3-0.6 \\ & \times 5-14 \end{aligned}$	slender rod $\begin{array}{r} 0.3-0.5 \\ \times 5-15 \end{array}$
Motility	+	$+$	+	$+$	$+$
Aerbic growth	+	+	$+$	$+$	+
Anaerobic growth	-	-	-	-	-
Growth in $10^{\circ} \mathrm{C}$	+	+	$+$	$+$	+
$25^{\circ} \mathrm{C}$	+	$+$	$+$	+	+
$30^{\circ} \mathrm{C}$	+	-	-	+	$+$
NaCl tolerance :					
Growth in 0\%	+	+	+	+	+
0.5\%	+	$+$	-	-	-
1.0\%	+	+	-	-	-
2.0\%	-	-	-	-	-
Production of :					
cytochrome oxidase	+	+	+	$+$	+
hydrogen sulfide	-	--	-	-	-
indole	-	-	-	-	-
Degradation of :					
gelatin	$+$	+	+	+	+
starch	+	+	+	d	-
chitin	+	+	d	-	-
cellulose	-	-	-	-	-
Fermentation of :					
glucose	+w	+w	d	d	-
fructose	+	$+$	$+$	$+$	+
lactose	-	-	-	-	-
galactose	-	-	-	-	-
sucrose	-	-	-	-	-
maltose	$+$	+	+	+	+
cellobiose	+w	+w	+w	+w	+w
melibiose	+w	+w	+w	+d	+d
arabinose	+	+	-	-	-
xylose	-	-	-	-	-
raffinose	+w	+w	+w	+w	+w
inulin	+w	+w	+w	$+\mathrm{d}$	+d

adonitol
mannitol

- \qquad -
+ positive, $+\mathrm{w}:$ weakly positive, $-:$ negative, $\mathrm{d}:$ diverse

Table 13. Antimicrobial sensitivity of A. hydrophila and E. tarda isolated from diseased fish (sensitivity disks "EIKEN \& SHOWA)

Antibacterials agent	Concn. ($\mu \mathrm{g}$)	C-2	$C-4$	Is-4	$1 s-5$	ls of sen Strains $E-19$	sithvity $\mathrm{E}-20$	T-6	T-10
Penicillin	30	-	-	-	-	-	-	-	-
Erythromycin	30	$+$	$+$	$+$	$+$	$+$	+	+	$+$
Kanamycin	30	+ +	+ +	+ +	$++$	+ +	+ +	+ +	$t+$
Chloramphenicol	30	$t++$	+ + +	$+++$	$+++$	+ + +	$+++$	$+++$	$+++$
Oleandomycin	30	-	-	--	-	-	-	--	-
Gentamicin	30	$+$	$+$	-	-	$+$	+	+	+
Tertacicline	30	$++$	+ +	+ +	$t+$	$++$	+ +	+ +	$++$
Nalidixic Acid	50	$+++$	$+++$	$+++$	$t+t$	$t+$	$+$	+ +	+ +
Furazolidone	20	$+$	$+$	+	+ +	$++$	$+$	$+$	-

Describes the zone of inhibition in millimeters :

- : resistant, $+: 0-9,++: 10-19 .+++: 20-30$

Table 14. Antimicrobial sensitivity of four strains of F. columnaris isolated from diseased fish (sensitivity disks "EIKEN \& SHOWA)

Antibacterials agent	Concn.		Levels of sensitivity			F. columnaris$\mathrm{T}-13$
	($\mu \mathrm{g}$)	C-7	Is -8	e^{-21}	T-16	
Penicillin	30	-	\cdots	-	--	-
Erythromycin	30	$+++$	+ + +	$t++$	$++$	+ + +
Kanamycin	30	+	$+$	$+$	+	$+$
Chloramphenicol	30	$+++$	$+++$	$t++$	+ + +	$+++$
Oleandomycin	30	$++$	$++$	$++$	$++$	$++$
Gentamicin	30	$+$	+	+	+	$+$
Tertacicline	30	$+++$	$+++$	$+++$	+ + +	$+++$
Nalidixic Acid	30	$+++$	$+++$	$+++$	$++$	$+++$
Furazolidone	20	$++$	+ +	+	$+$	$+$

Describes the zone of inhivition in millineters :
$-:$ resistant, $+: 0-9,++: 10+19,+++20-30$

얻어 2～3回 tetracycline을 使用하면 치유효과가 없 어지는 것을 볼 수 있었다．이때에 tetracycline에 대한酎性이 높게 나타낪다．

따라서 병이 流行둴 때 마다 藮䦌感受性시험을 실 시하여 적절한 薬䯇䓃 투여하여야 되리라 생각된다．

이와같은 결과는 Aoki둥（1871），Aoki둥（1973）， Aoki（1981）등의 보고와는 차이가 있다．그동안 약제 의 무절제한 사용에 따라 내성귱이 많이 생겼는 젓 으로 생각된다．

11．免疫效興 椆查

1978년 Gould와 Fryer둥에 의하면 어류룰 면역시 키는 경제적인 Vaccine 루여방법올 개발하였다．
 Vibrio Vaccine을 Vaccination하여 높은 免疫價苌 攃得하였다고 하였다．이 啧筋 Vaccination（Spray Vacci－ nation）은 경구적 Vaccine보다 높온 免疫이 獲得되는 것이 判明되었다 한다．

Itami（1980）도 양식온어（Plecoglossus altivelis）에 Vibrio vaccine을 Spray Vaccination한 결과 Vaccine 稙類에 따라 큰 差異가 있었는데 포르말린死菌Vaccine 이 가장 높은 凝集傮异 璂得하였으머，또한 가장 장 기간 유지되었고，포르말린死菌에 Bentonite을 첨가한 것이 더욱 효과가 있다고 하였다．따라서 集雷免疫獲得方法으로는 Spray Vaccination이 가장 유효하다고 인정된다．

像備責験으로 經皮 Vaccination과 浸漬 Vaccination 으로 免疫 可能性 如否量 조사 하였다．

Table 15에 나타난 바와같이 잉어，이스라옐잉어 및 뱀장어에서 분리한 A．hydrophila C－2，Is－5，E－19률接種한 잉어와 抗血清에 대한 凝集素瑻는 높게 나타 넜다．

C－2률 接䅦한 잉어는 1 주일만에 80 倍에서， 3 주일만 에 640 倍， 6 주일만에 1,280 倍로 그 凝集素價가 중가되 다가 9 주 및 12 주일 것온 320 倍로 減少되었다．

Is－5를 접종한 잉어는 1 주일만에 160 倍， 3 주일만에 1,280 倍， 6 주일만에 2,560 倍로 중가하였다가 9 주일 및 12 주일후애는 640 倍로 減少되었고， 15 주일만에는 160倍로 감소되었다．뱀장어에서 분리한 E－19률 접종한 잉어는 1 주일만에 160 倍， 3 주일만에 2,560 倍로 중가하 다가 9 주일후에는 640 倍로， 12 주일후에도 640 倍로 감 소되었다． 18 추일이 지나니 모두 40 倍로 滅少되는 것 으로 보아서 15 주정도의 免疫效果䓃 기대할 수 있었 다．Vibrio균과 같이 Aeromonas균도 O抗原에 대하여 단기간에 높은 抗譄量 生産하는 能力이 있는 젓으로 추정되나 빨리 $ㄱ$ 力價가 감소되는 결함이 있다 Gould둥（1078），Itami（1980）．

集温動物에 있어서의 抗體生産能力온 水温에 따라 심한 차이가 난다．Nybelin（1935）및 Pliszka（1939）는魚類의 抗體生産能力은 $10^{\circ} \mathrm{C}$ 이하에서는 일어나지 않 는다고 하였으며， Mann（1935）은 잉어의 경우 $18 \sim 20$ ${ }^{\circ} \mathrm{C}$ 에서 가장 높은 凝集顀曽 언었다고 하였다．Dulf （1942）는 연어와 솧어類에 있어서는 $10^{\circ} \mathrm{C}$ 에서도 抗輁 가 生産된다고 하였다．

Hosina（1962）는 뱀장어에 A．hydrophila量 接盾하여水温 $6 \sim 10.5^{\circ} \mathrm{C}$ 에서 56 일간 사욕한 결과 凝集僋 $320 \sim$ 640읍 얻었다고 하였다．반면 Autalion（1979）온 水温
生産되었으나，水温 12 C下에서는 抗原接稙京 5～6個月이 지나도 抗體가 敛出되지 않았다고 하였다．또 한 $25^{\circ} \mathrm{C}$ 에서 抗随生産을 시킨후 $12^{\circ} \mathrm{C}$ 水温에 옮겨도正常的인 免疫應答이 일으났다고 効다．

따라서 魚類의 免疫反碓은 水温에 影警을 받는 것 으로 생각된다．본 실헙에 있어서는 잉어 飼育水温을 $18.0 \sim 21.6{ }^{\circ}$ 로 유지시켰다．Table 15 에서 보는 것과 같이 단기간에 높은 凝集價가 얻어지는 반면，지속성 이 없이 樴己 凝集債가 減少되었다．免疫抗原接種亭 6 遇만에 最高訓 達效으며， 18 주후에는 平均數集傮 40 으로 저하되었다．이 點은 알수 없으나 Kimura（1970） 가 무지개尽어에 A．Salmonicida의 加熟死菌을 接種한 후 18 주만에 平均 2,048 의 凝集價量 얻은 結果와는 큰 차이가 있다．

生䔰에 의간 攻紫試験

Vaccine 을 接種한 후 3주일후에 A．hydroplila C－2生菌에 의한 攻撃試験을 한 結果 C － 2 포르말린死菌區 에서는 20% 의 폐사가 일어넛고，Is－5 포루마린死菌區 에서는 10% 외 폐사율이 나타난 반면 垶照區에서는 100% 가 폐사되었다．

9주후에 다시 生菌接墦을 한 結果 C－2區에서는 50 $\%$ ，Is－5區에서는 20% ，E－19⿷匚⿱口⿰口口⿱一⿻上丨𣥂에서는 10% 의 폐사율 을 나타냈으며 對照區에서는 100% 폐사되었다．

이상올 綜合하니 포르말린死菌에 의한 感染防繁效果가 있으므로 A．hydrophila는 Vaccine에 의한 豫防可能性이 있다고 인정된다．

Hoshina（1962）는 A．punctada（A．hydrophila）와 Edwardsiella tarda（Paracolobacterum anguillimortife－ rum）잩온 量의 포르말린 死菌율 근육에 接看한 후，生菌 攻擊시혐을 한 結果 Vaccine의 有效性을 학인하 였다．Hara（1976）는 산천어애 A．salmonicida의 經口 적으로 Vaccine을 투여한 結果 免疫效果가 있었다고 헸다．또한 Kawai（1981）는 은어에 Vibrio녕 經ㅁ Vac－ cine의 有效性을 확인 하였다．Kusuda（1980）는 은어 Vibrio볌외 浸漬法 Vaccine의 有效性을 확인했다．따

Table 15．Changes in agglutinin titer formalin－killed cells of A ．hydrophila in the carp．

Strain	Number of fish	Mean of body weight	Geometric mean of agglutinin titer（1：） Weeks after immunization						
			1	3	6	9	12	15	18
Control	5	500（g）	0	0	0	0	0	0	0
C－2	10	400 （g）	80	640	1，280	320	320	80	20
Is－ 5	10	$500(\mathrm{~g})$	160	1.280	2.560	640	640	160	40
$E-10$	10	600 （g）	160	1.280	2.560	640	640	160	40
Mean of	water	temperature（ $1 / 2$ ）	18.0	18.6	19.4	19.6	20.7	20.8	21.6

라서 이 Vaccine을 양식어류에 미리접종하여 둔다면豫防效果가 클 것으로 추정된다（Table 15）．

전국 뱀장어 温室加温池에서 년중 검출되는 $E d w a$－ $r d s i e l l a ~ t a r d a$ 에 의한 피헤가 크다．또한 胞子蟲과 다 른 병원균과의 混合 감염일 때는 폐사율이 높은 것이 특징이었다．

이와같이 유행되는 Edward병은 뱀장어 뿐만 아니 라 틸라피아에도 심한 피해을 주며 잉어．금붕어，은 어，무지개솧어，매기，숭어，참돔둥 담수어와 해산어 에서도 감염된 것이 중명되었다．（Wakabayashi 둥（19 73），Hoshina（1962），Meyer（1973），Miyaxhita（1984）， Kusuta（1970），Kusuta（1977），Kusuta（1981））

이와같이 광범위하게 감염되는 Edward병의 예방이 시급한 문제로 대두되었다．
Edwardsiella tarda는 血清型올 달리하는 苳株간에 있어서의 病病性에차이가 있으며（朴등 1982），O 抗原 에 대한 免疫應答에도 異見이 있다．（Fulvio등（1983）） Vibrio Vaccine인 경우 포르말린死菌 O 抗原에 의한 근육주사법 浸漬法 및 Spray Vaccination으로 높온 防御免疫能力이 확인되었다．Gould and Fayer（1978），田 （1985），Sahai 둥（1984），Aptipa등（1977），Aoki（19 84），Kawano（1983），Gould（1978）．

E．tarda의 경우 건강한 뱀장어 장내에서도 검출되 고 병어의 장내에서도 검출되며，사육수중과 뻴에서도 검출된다．병어의 장내 내용물에서 수많은 E．tarda규 이 분리되지만 晹組緎에는 아무런 病變이 일어나지 않았다．Ullah \＆Arai（1983）는 뱀장어와 넙치에서 분 리한 E．tarda 菌株에 대하여 각훔 병월성을 조사한 결과 菌膡가 지닌 溶血毒性이 토기 피무에 대한 塊死毒性을 가지나 大腸菌이 가지는 䐗管毒素는 인정되지 않았다고 하였다．이와 같은 사실은 腸内의 $E . \operatorname{tarda}$ 는腸組織에 病巢邕 헝성하는 톡징을 가진다．병리학적 으로 践維素性化膿炎이다（Plate．8）。

본 실험에서 뱀장어에서 분리한 E．tarda률 틸라피 아에 접종하고 그 동태를 조사하 바，毒을 지닌 菌株 일지라도 접좋한 틸리피아는 자연 치유되었다．E．$t a$－ $r d a$ 가 魚體의 血液中에서 중식하는데는 绦件이 따르 는 것잩다（Table 16）．

Table 16．Agglutinin titer of anti－E．tarda SU 703．E－ 20 rabbit sera against E ．tarda E－20．T－10． T－6 isolates

Antiserum	Edwardsiella tarda antigen			
	SU703（F）	strain		T－10（F）
		E－20（Fi	T－6（F）	
Anti E．tarda SU 703	2560	640	620	320
Anti E．tarda $E-10$	160	2560	1280	1280

（F）：Formalin－Killed
E．tarda는 細綱内皮細胞나 好中球둥의 食細胞에捕食되어도－I들 細胞内에서 증식하고．나아가서 塊死되어 膿올 만든다．따라서 免疫應答의 기구가 成立 되기 힘드는 섯을 알 수 있다．Fulvio둥（1983）은 E ． tarda의 lipopolysaccharide（LPS），培養濾液 및 포르말 린 死菌을 각각 뱀장어 筋肉内接種하여 그 血清의 抗䯚價量 測定하였더니 抗體價의 ․ ．䒜이 확인되었다． 그러나 攻撃京의 生莪率은 lipopolysaccharide 免疫群 이 가장 높았으며，포르마린 死菌이나 LPS가 다같이 높은 凝集収㕠：을 나타냈으나 lipopolysaccharide抗原 이 Vaccine으보서 가장 윳하나고 인 정된다．

포르말린死菌 懸浊液에 唚漬纤킨 틸라피아는 凝集價를 나타내지 않았으므로 防御免瘃效果는 기대할 수

없였다．Song등（1982）에 의하면 反復浸溃시키므로서對照群에 比午乐 높은 防御免疫을 기대할 수 있다고 하였다．

要 約

잉어科 魚疑인 잉어，이스라멜잉어，붕어와 뱀장어 틸라피아에서 발생되는 細菌性疾病에 대하여 工 工 病因
上 기준이 되는 특징을 볍히 하여 쵸과적인 예방과 치료대챙을 강구한 종합적인 연구 結果이다．
全國各地에서 발생되는 잉어，이스라엘잉어，붕어， 뱀장어 및 틸라피아 눙 450 마리의 病魚에 대하여 外部㱏狀，해부학적 소견，병리조직학저 소견，병원균분 리 동정 등으로 세균성졀병ㅎ⼺⼺퓨의 기준이 되는 특징 을 ⿰日月白히 하였다．
이들 세귝성질병은 䯈表나 지느러미에 充血이나 出
 장관에 资症이 일어나며，各組腲에 出血性炎症이 과
 형성된다．
이상과 같은 病魚를 細蒾尊的으로 調查한 結果 $A e$－ romonas hydrophila와 Edwardsiella tarda균이 순수 분 리 동정되었다．
특히 주기적으로 調査한 222 마리의 병든 뱀강어에 서 177 病原柬株를 분리하였는데 Aeromonas hydro－ phila 가 29.94% Edwardsiella tarda가 48.58% ，Flexi－ bacter columnnaris 21.47% 였다．이중 Flexibacter colu－ mnnaris는 아가미가 부식되 뱀장어의 아가미에서 분 리되었다．
이들 分路菌株中 Aeromonas hydrophila와 Edward－ siella tarda를 실혐어류에 접종한 結果 같은 病이 발 생되었고，발병된 실험어류에서 접종한 병원균이 분 리되였다．
굥주，부산 등지에서 수집한 병든 뱀장어로부터 분 리되어 Aeromonas hydrophila 병으로 진단톤 뱀장어는 지느러미와 䯈表에 出血이 일어나 부어을랎으며，腸과 ㄲ⼞․에도 炎症이 일어나고 있었다．腸의 내용물은 병원 군이 混合둰 粘棭物質로서 腃炎을 유발시키고 있었다． 분리된 A．hydrophila의 5 菌株를 비당잉어와 봉어에 접종한 結果，3－4일만에 발병되어 죽었으며 죽은 실 험어는 모두 A．hydrophila병의 특징올 나타냈다．
봉든 뱀장어에서 Edwardsiella tarda균이 분리되어 Edward 병으로 진단되 뷴어는 腆表에 浸諹이 形成되 며 㬴과 같이 다수의 镇食細胞가 集結되어 있었다． 중상이 진행됨에 따라 組機이 웁해되어 䐵場이 大形化되였다．

内滕에 있어서도 크고 작은 膿場이 보였는데 특히胃腊에는 횐 結節이 다수 나타넛다．병리조직항상으 로는 진행중인 크고 작은 때芽佰이 ㄷㅏㅜ 관찰 되었으 ㄴ．장영은 관찰되지 않앖다．
병든 백장어중 아가미가 부식되고 Flexibacter colu－ mnaris가 분리되어 Columnaris 병으로 진단된 뱀장어 는 色이 약간 회게 보일뿐 다른 外部㱏狀인 出血斗充血은 전혀 나타나지 않안다．
해부하여 보아도 아가미가 약간 부식되어 있었으나 각 내장은 正常的이었으며 商敗臭가 전혀 나지 않안 다．
이들 새균성 질병을 치료하기 위해서는 20 ppm 의 chloramphenicol 또는 kanamycin에 1 시간 약욕시키거 나，하루애 chloramphenicol 75 mg 을 1 kg 에 해당되는 방어에 5～7일간 투여하여야 한다．
포르말린 처리한 Aeromonas hydrophila 항원을 잉어 에 주사한 결과 3 주에서 6 주사이에 높은 웅집가를 4 타쌨으마，비륙 椥集曊는 감소되었지만 18 주까지 지 속되였다．
포르말려 처리한 Edwardsiella tarda항원을 틸라피 아에 주사한 결과 높은 梫集原가 나타너ㅇㅡㅡㄴ，포르말 린 처리한 Edwardsiella tarda하늘 현탄시킨 용액에

Reference

Aoki，T．and S．Egusa（1971）：Drug sensitivity of Aeromonas liquefaciens isolated from freshwa－ ter Fish．Bull．Japan．Soc．Sci．Fish．，37（3）， 176－185．
Aoki，T．and T．Watanabe（1973）：Studies of Drug－ resistant bacteria isolated from eel－pond wa－ ter and intestinal tracts of the eel．Bull．Japan． Soc．Sci．Fish．，39（2），121－130．
Aoki，T．and K．Kawand（1981）：Changes in Drug－ resistance of Vibrio anguillarum in Cultured Ayu，Plecoglossus altiveiis．in Japan．J．Fish． Diseases．4，223－230．
Aoki，T．，M．Saki，and S．Takahashi（1984）：Prote－ ctive Immunity in Ayu，Vaccinated by Immer－ sion with Vibrio anguillarum．Fish Pathology， 19（3），181－185．
Abtalion，R．R．，Q．Wajdani，Z．Malik，R．Sharabani， and M．Kuczyminer（1973）：Influence of en－ vironmental temperature on the immune res－ ponce in fish．Curr．Topics．Microbiol．Immun．，

61，1－35．
Amandi，A．，S．F，Hiu，J．E．Rohovec，and J．L．Fryer （1982）：
Isolation and characterization of Edwardsiella tarda from fal Chinook salmon．Appl．Environ， Microbiology，43（6），1380－1384．
Bullock，G．L．（1972）：Studies on selectied Myxo－ bacteria pathogenic for Fishes and on Bacte－ rial Gill Disease in Hatchery－Reard Salmo－ nids．U．S．Fish．Wildl．Serv．Tech．Paper，60， 30pp．
Colwell，R．（1969）：Numerical Taxonomy of the Flexibacteria．J．Gen．Microbiol．，58，207－215．
Cowan，S．T．（1974）：Manual for the Identification of medical bacteria 2nd．Cambrige Univ． Press．London．238pp．
田世圭（1983）：高密度 뱀장어 䬩殖水槽纥 疾病對策．輔水誌，10（2），103－110．
田世圭•孫相桂（1985）：틸라피아에서 分離한 Flexi－ bacter columnaris 性狀．軲水誌，18（4），369－ 373.

田世圭•金銑禹（1985）：Vibrio菌에 대한 뱀장어의免疫反㦄 水詰，18（5），464－470
Duff，D．（1942）：The oral immunization of trout against，Bacterium salmonicida．J．Immunol．， 44，87－94．
Fijan，N．N．and P．R．Voorhees（1969）：Drug sen－ sitivity of Chondroceccus columnaris．Veterina－ rxki arhiv．Zagreb．Knjiga，XXX／X．（910） 259 －267．
Gould，R．W．，P．J．O＇Leary，R．L．Garrison，J．S． Rohovec，and J．L．Fryer（1978）：Spray Vacci－ nation：A method for the Immunization of Fish．Fish Pathology，13（1），63－68．
Gould，R．W．，P．Antipa，and D．F．Amend（1979）： Immersion Vaccination of Sockeye Salmon with two pathogenic strains of
Hosina，T．G1964）：ゥナキ゚の鮹赤病に關する研究．東京水大特報．
V．anguillarum．J．Fish．Res．Board．Can．，36， 222－225．6，1－104．
Hara，T．，K．Inoue，S．Morikawa，and F．Tashiro（ 19 76）：Vaccination rtials for control of furun－ culosis of salmonids in Japan．Fish Pathology， 10，227－235．
Hatai，K．，S．Ogawa，and N．Yasunaga（1982）：Pa－ thogenicity of Edwardsiella tarda Isolated from

Cultured Red Sea Bream．Bull．Nagasaki pref． Institute Fish．No．8，67－73．
Itani，T．and R．Kusda（1980）：Studies on Spray Vaccination against Vibriosis in Cultured Ayu -1 ．Bull．Japan．soci．Scien．Fish．，46（5）， 533 -536.
Ishihara，S．and R．Kusuda（1982）：Growth and Survival of E．tarda Bacteria in Environmental water．Bull．Japan．Soc．Sci．Fish．，48（4）， 483 －488．
Kimura，N．（1969）：A New Subspecies of Aeromo－ nas salmonicida as an Etiological agent of fu－ runculosis on Oncorhynchus masou and O．go－ rbuscha rearin for maturity part 2 ，on the se－ rological properties．Fish Pathology，3（2）， 45 -52 ．
Kimura，N．，H．Wakabayashi，and S．Kudo（1978）： Studies on bacterial gil transmitting gill di－ sease，in salmonids， 1 ．Selection of bacterium transmitting gill disease．Fish Pathology，12， 233－242．
Kusuda，R．，and Y．Takahashi（1970）：Studies on the scale protrusion diseases of Carp Fishes． 1．Fish Pathology，4（2），87－95．
Kusuda，R．，T．Toyoshima，Y．Iwamura，and H．H． Sako（1976）：E．tarda from and Epizootic of Mullets（Mugil cephalus）in Okitsu Bay． Bull．Japan．Soc．Sci．Fish．，42（3），171－175．
Kusuda，R．and S．Ishihara（1981）：The Fate of E ． tarda Bacteria after intramuscular injection of Eels．Bull．Japan．Soc．Sci．，47（4），475－479．
Kanai，K．，H．Wakabayashi，and S．Egusa（1977）： Comparision of Intestinal Microflora between Healthy and diseases Pondcultured Eels．Fish Pathology，12（3），199－204．
Kawai．K．and R．Kusuda（1983）：Efficacy of the Lipopolysaccharide vaccine vibriosis in cultu－ red Ayu．Bull．Japan．Soc．Sci．，49（4），511－ 514.

Kawano，K．，T．Aoki，and T．Kitao（1984）：Duration of protection against vibriosis in Ayu Plecoglo－ ssus altivelis vaccinated by Immersion and oral Administration with Vibrio anguillarum． Bull．Japan．Soc．Sci．Fish．，50（5），771－774．
Krieg，N．R．and J．G．Holt ed．（1984）：Bergey＇s Salati，manual of Systematic Bacteriology．Vol． 1．964．pp．Williams \＆Wikins，Baltimore，U．S．
A.

Kevin, H. G1985) : Procedures for the Detection and Identification of Certain Fish Pathogens. 3rd. Ed Fish Health section, American Fisheries Society, Oregon.
Lewin, R. A. (1969) : A Classification of Flexibacteria. J. Gen. Microbial., 58, 189.
Meyer, F. R. and G.L. Bullock (1973) : E. tarda a New pathogen of Channelcatfish. appl. Microbiology, 25(1), 155-156.
Macfaddin, J. F. (1980) : Biochemical tests for Identification of Medical Bacteria. Williams \& Wikins, P. 526, U.S.A.
Minagawa, T., T. Nakai, and K. Muroga(1983) : Edwardsiella tarda in Eel. culture Environment. Fish Pathology, 17(4), 243-350
Miyashita, T. (1984): Pseudomonas fluorescens and E. tarda isolated from diseased Tilapia. Fish Pathology, 19(1), 45-50.
Nybelin (1935) : Untersuchungen uber den bei Fixchen Krankheit serregenden Spaltpilz Vibrio anguillaum. Medd. Undersokn-Anst. Sotvatten Fish. Stockhalm, 8-62.
National Committe for linical Laboratory standards. (1976) :

Performance standards for antimicrobial disc Susceptibility tests.
Pliszka (1939): Unter suchungen uber die Agglutinine vei Karp fen vorlaufige mitteilung. Zb . Bakt. Hyg. 1. Olig., 143. 262-264.
Park, S. I., H. Wakabayashi, and Y. Watanabe(1983) : Serotype and Birulence of Edwardsiella ta$r d a$ isolated from eel and their environment. Fish Pathology, 18(2), 85-89.
Sakazaki (1967): studies on th Asakusa group of Enterobacteriaceae (E. tarda). Japan. J. Med. Sci. Biol., 20, 205-212.
Sorimachi, M., and S. Egusa(1971): Aerobic Bacteria in $t_{1 . .}$ Intestines of pond-cultured Eels. Fish Pathology, 6(1), 1-7.
Sugita, H., Y. Ishida, and H. Kadot(1980): Media for the Enumeration and Isolation of Aerobic Bacteria in gastrointestine of Tilapia nilotica. Bull. Japan. Soc. Sci. Fish., 46(1), 91-95.
Song, Y.L., G. H. Kou, and K. Y. Chen (1982) : Vaccination conditions for the Eel, with Edwardsiella anguillimortifera Bacterin. CAPD Fishe-
ries Series, 8, 18-25.
Salati, F., K. Kawai, and F. Kusuda (1983) : Immunoresponse of Eel against Edwardsiella tarda Antigens. Fish Pathology, 18(3), 135-141.
Selati, F., K. Kawai, and F. Kusuda (1984) : Immune response of Eel to Edwardsiella tarda Lipopolysaccharide. Fish Paihology, 19(3), 187 -192.
Saki, M., T. Kitao, J. S. Rohovec, and J. L. Fryer (1984) : Comparision of the cellular immune response of Fish vaccinated by Immersion and injection of Vibrio anguillarum. Bull. Japan. Soc. Sci. Fish., 50(7), 1187-1192.
Takahashi Y., and H. Hujino (1984): Growth of Epiphytic Bacteria on the body surface, skin, gill, and intestinal tract of Carp under breeding conditions. Bull. Japan. Soc. Sci. Fish., 50 (5), 735-742.

Ugajtn, M. (1979) : Studies on the Taxonomy of Major microflora on the Intestina contents of salmonids. Bull. Japan. Soc. Sci. Fixh., 45(6), 721-831.
Wakabayashi, H., and K. Kira, and S. Egusa (1970) : Studies on columnaris diseases of pondcultured Eels-1. characteristics and Pathogenicity of Chondrococcus columnaris Isolated from pond cultured eels. Bull. Japan. Soc. Sci. fish., 36(2), 147-155.
Wakabayashi, H., and S. Egusa (1973): Studies changes of Bacterial infections among pondcultured Eels. Fish Pathology, 8(1), 91-97.
Wakabayashi, H., K. Kanai, and S. Egusa(1976): Ecological studies of Fish pathogenic Bacteriz in eel farm-1.
Isolation of Aerobic Bacteria from pond water. Fish Pathology, 11(2), 63-66.
Wakabayashi, H., and S. Egusa(1979) : What is the Best organ for the Isolation of Eel-pathogen. fish Pathology, 13(4), 201-203.
Wakabayashi, H. (1980) : Bacterial gill diseases of salmonid Fish. Fish Pathology, 14(4), 185189.

Wakabayashi, H., and S. Egusa, and J. L. Fryer(19 80): Characteritics of filamentous bacteria Isolated from a gill diseases of Salmonids. Can. J. fish. Aqua. Sci., 37, 1499-1504.
Wyatt, L., R. Nickelson, and C. Vaderzant(1979) :

Edwardsiella tarda in Freshwater Catfish and

 Their environment. Appl. Environ. Microbiology, 38(4), 710-714.Plate 1. Crucian carp representing reddish fin, 24 hrs after intramusculary infection of the A. hydrophila strain Is-5.
Plate 2. Color carp representing swelled reddish abdomen and scale protrusion, 24 hrs after intramusculary injection of the A. hydrophila strain Is-5.
Plate 3. Naturally infected Israel carp representiong hemorrhagic body surface.
Plate 4. Naturally infected eels representing reddish fin, and body surface ulceration.
Plate 5. Color carp representing reddish abdomen and body surface ulceration, 48 hrs after intramusculary injection of the A. hydrophila strain $\mathrm{E}-19$.
Plate 6. Tilapia representing hemorrhagic body surface, 24 hrs after intramusculary injection of the E. tarda strain E-20.
Plate 7. Tilapia representing many white lesion of the body surface, 96 hrs after intramusculary injection of the live E. tarda strain E-20.
Plate 8. Liver of tilapia(Plate 7) representing focal necrosis with the bacteria-laden inflamatory cells, after 96 hrs direct smear, x2000.
Plate 9. Liver of tilapia(Plate 7) representing small granuloma in the infected lesion after $120 \mathrm{hrs}, \mathrm{H}-\mathrm{E}$ stain, X400.

2

4

7

