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ON SOME PROPERTIES OF BOUNDED HOMOMOR-
PHISMS AND DERIVATIONS OF A C*-ALGEBRA

MAasARU NAGISA AND YOUNGMAN NAM

We consider some properties of the completely bounded
representations of C*-algebras. We discuss the relation
between the k-similarity and the property D, and get the
result every k-similar C*-algebra has property D;. More-
over we determine the similarity problem for the algebra
CHFEC precisely and constructively.

1. Introduction

Let ¢ be a bounded non-degenerate representation of a
(*-algebra A on a Hilbert space H. The following fact is
well known:

$ is similar to a #*-representation if and only if ¢ is
completely bounded.

Haagerup ([5)) has shown that there exists a bounded
invertible operator 7 on H such that T¢7T! is a *-
representation and || T|] [|777!|=1{¢!l.s. Recently Christensen
([4]) has shown that any representation ¢ of a Il;-factor
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with property I" is completely bounded and |[¢{l, < |1¢][4

Therefore to determine a similarness of a bounded re-
presentation will be assigned to determine its compleie
boundedness, So it is interesting to estimate a complete
bounded norm of a bounded representation and to study
the connection between this norm and its original norm.

According to these motivations we will define the
following notations.

DEeFINITION 1. Let %2 be a positive real and ¢ be a boundcd
linear map from a C*-algebra A inte a C*-algebra B. Then
¢ is said to be k-completely bounded, if ¢ is completely
bounded and |3}, = |8]*

LAt

For example, each completely positive map ¢ is com-
pletely bounded and [¢l,,=[8!, =znd every cyclic bounded
representation is 3-completely bounded. (cf.751.)

DErFINITION 2. A C*-algebra A is said to be &-similar,
if every bounded non-degenerate representation of A or a
Hilbert space H is k-completely bounded.

As mentioned above we will see that for any #Z-simila:
C*-zlgebra A, every bounded representation of A is similar
to a =-representation. The following fact is known:

A nuclear C*-algebra is 2-similar (cf. [1], {2]).

A (C*-3lgebra which has no tracial states is 3-similar.

A properly infinite von Neumann algebra is 3-similar
(057), and a type [l-factor with property I” is A4-

similar.

But these estimations are not necessarily best passible. In
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fact we can show that a 2-dimensional C*-algebra CPC is

1l-similar.

2. k-similarity

In this secticn, we will discuss some preperties of k-

similar C*-algebras. At first we note the following fact.
LEMMA 3. Let x and 1 (the identity operator) be in
B(H) and A be a positive real. Then we have a norm of

an operator (%} ';f) in B(HBHH),

WL zyi_1 2 2 1/
(L V= Leaatie oD el D

Proor. Let x=u/lz|} be a polar decomposition of x. We
1z )
compute the norm of an operator 0 A SO W€ may assume

that this partial isometry # is a unitary operator from H
to H. Using this unitary operator #, we can identify the
algebra B(JI®H ) with B(H)QM,. That is, this identi-

fication 1s as follows;

B(H®HH) B(H YR M,
\). {
, ab
vaw* +ub+cw¥+d ——- - (c d)

Therefore, we can calculate the norm of ((l) “fi”) in BUAYRM,.

Let HxH:}.llm « de(w) be the spectral decomposition of [x].
Since we get ((1] *f‘):](}} ;‘) dE(1), where AE(x) =

de(p) 0
( 0 de(,u))’ then we have
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(31 Yomo (4 £ )i o5

H( 1 IIxII ll

2 LiHzliz+ o+ 121724 (] + (=122,

The proof is complete.

Let e be an idempotent operator on H and p be the range
projection of ¢ Then (1-—p)e=0. Therefore we can re-
present ¢ as following form

(§ & )eBrHBU-PH),

where x is an operator from (1—p)H to pH.

CoroLLARY 4. If {¢, H} is a bounded representation of a
C*-algebra A, then the following two conditions are equi-
valent:

(1) lgll=1

(2) ¢ is *=-representation.

Proor. (2) implies (1): It is obvious. (1) implies (2):
By considering the transposed map of the restriction of
‘9 to B(H )*, we may assume the ¢ is a normal represen-
tation of a von Neumann algebra A** on H. Hence we
have only to show that ¢( p) is a projection for any projec-
tion p in A¥*¥,

We assume that ¢( p) is not projection. Then ¢( ) is an
idempotent, so ¢{ p) has the form ((1} ﬁ ) as mentioned

above, where x#0. However, we have [|¢( p)I|>1 by
L.emma 3, which contradict to ||¢||= 1.
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From now on we will consider the k-similarity of a C*-
algebra CDC. Let {¢,H} be a representation of the 2-
dimensional algebra CPHC. If we denote by H, and H,
the range space of the idempotent ¢(1,0) and its orthogonal
complement respectively, then we can represent the operator

$(1,0) by the form ({1) “E)EB(H@H):B(H), and $(0,1)

has the form( g _‘g) We define a bounded invertible ope-

rator S and a *-representation 7 of C+C on H as follows

s=(§ §)eBHSH)
and
71(a$ B) =ap <5, BPZ’

where p, is a projection from H to F{,. Then we can sece
that ¢=S5"1zS, that is, ¢ is similar to this *-representation
7. Moreover we consider the bounded invertible operator

T=(§ (afiieni )

Then we get the following result.

THEOREM 5. For any bounded nen-degenerate representation

¢ of CPHC on a Hilbert space H, we use the above notat-
ions. Then

(1) léli=11¢(1, —1)]|. (the norm of a difference of two
idempotents. )

(2) ¢=T"12T.

(3 U 1T " 1I=4ll.

In particular, CPC is 1-similar.

Proof. (1) For any a, BEC, we can represent é{c, f) by
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the foliowing from

s, =g @),

We compute this norm. We may assume |a|=|B|=1, so
el =t & 21 Y=nati+ itz 1y

Conversely,
I+ '
oL —Dli=f( § & )=llali+ i+
Thus we get

l1gli=118(L, —DII.

(2) it is Clear that we note the fact ( é (”x“‘?"—l)l/z )
belongs to the center of the range of z.

(3) Let 2=(jixl{*+1)*%. We note that T and T ! have
the following form,

7=(o 3

1
0
{1 —x 1 0 N\N_(1 —=x/2
L 1”(0 1 )(o 1/2)—(0 1/2)'
Using Lemma 3, we can compute norms of [{ 77!, |7 "' and
get |71 || T U=zl + (Jlz]|24+1)}1"2 The proof is complete.

ProrositioN 6. Let A and B be C*-algebras and % be a
positive real. Then the following holds:

(1) If ADB is k-similar, then A and B are k-similar.
(2) If both A and B are £-similar, then A@B is (&+1)-
similar.

(3) Suppose that {A,} is an increasing sequence of &,-
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similar C*-subalgebras of A, A=A, and N=sup & < o,
then the C*-algebra A is N-similar.

Proof. (1) It easily follows by identifying A and B with
A+0 and 0+B in A+ B respectively,

(2) Let ¢ be a bounded non-degenerate representation of
A+ B on a Hilbert space H. Put ¢=¢lcze. By Theorem §
there exists a bounded invertible operator 7" on X such that
ToT ! is a *-representation of CHC on H and |} =P\,
Hence we denote by p,, p, orthogonal projections T
(1L, MT Y, Te¢(0,1)7T " with sum 1 respectively., Putting
H, =p H, ¢, =ToT 1, (i=1,2), it follows that ¢, and ¢,
are bounded non-degenerate representations of 4 and B on
H\ and H, respectively, and 79T '=¢,;Fp,. Since T is of
the form ((1] ‘;) by Theorem 5 for each a&=A and bEBS,
we have

é(a,b) =T (¢, ()P, (ENT

{5 "T2) (P6760m ) (6 3)
(9@ sz wo\b)\

¢, (&)

.......

s - completely bounded becausc ¢,and ¢, are &-completely

Hence 6] = max {{[¢.]], |lda1 1 =1]¢, %6, . Noting that ¢,E -

bounded by assumption, we have
Holl= T ¢:B¢2) Tl
= HTH BT lig B,
< gl 116:Bgal{*
= ol lpflF=[Ig][**1.

Therefore ¢ is (2+1)-completely bounded.
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(3) Suppose that ¢ is a bounded non-degenerate repre-
sentation of {JA, on a Hilbert space H. We put ¢,=¢l|4,
for each n & N, then ¢, is a bounded representation of A,.
Then we can easily show that {|¢|{=sup ||¢.il, therefore
the assertion follows.

CorOLLARY 7. Let A be a C*-algebra and I be a closed
ideal of A. If A is A-similar, then [ and A/I(the qoutient
algebra) are k-similar. Conversely, if I and A/ are k-
similar, then A is (k441)-similar.

PrOOF. Suppose that ¢ is a bounded non-degenerate re-
presentation of I on a Hilbert space H. Then it is exvended
to a normal representation ¢ of I** on H with {|g¢||=]I@li.
Since I** is a o-weakly closed ideal of a von Neumann
algebra A% J¥¥is of form A¥*z with a central projection
z of A¥* Put

g(x)=P(xz), zc A**

Then ¢ is a normal representation of A** on H such that
=gl and ||¢||=1|d!|(=1{i]). We note that if A is £-simi-
lar, then every normal representation of A*¥ is Z-completely
bounded. Thus we have

Holle=1181l=11g!le < Nl =11B|1¥= ||]]%

Next, suppose that ¢ is a bounded non-degenerate repre-
sentation of A/ on H and ¢ is the quotient map from A
onto A/I. Put $=g¢og. Then ¢ is a bounded non-degenerate
representation of A on H. By assumption there exists a
bounded invertible operator S on H such that p=S@S™! is
a %-representation of A on H and [|S|| 1S [={18!l...
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We define a *-representation of A/] on H by

7(g(a))=p(a)
for each @ € A. Then it follows that =S¢5 and
Holleo =< IS LS 1=l < 1i11* = LBl1A

The converse assertion follows from the fact that the
algebra A** can be identified a direct sum of ** and (A/D)**
and Proposition 6.

3. The relation to property D,

As stated in introduction, the similarity problems
concerned with the derivation problem. Specially, we con-
sider here the relation between #A-similarity and property
D, We recall the following definition.

DEFINITION 8. A C*-algebra A is said to have property
D, for some positive real %, if for each non-degenerate
*-representation ¢ of A on a Hilbert space H we have

d(z, $(A)) = kllad () [senl!

for all x&B(H ), where the left side is the distance of x
and the commutant ¢(A)’ of ¢(A) and ad(x)(@)=zxa—axz.

The reader is referred to Christensen([4],[5]) for several
results on property D,.

ToeoreM 9. Every k-similar C*-algebra A has property
D,, .. (in particular, D;.)

Proor. Let ¢ be a non-degenerate #*-representation of A
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on & Hilbert space H and let = be in B(H). We consider
for each positive real ¢ the representation ¢, of A into
B(HDH) given by

pia)=( #P 5@ aca

where 8=ad(x)<¢. Using Lemma 3, we have

wen{d o) (5 50) (49 0
' (1 t8(a)) '(é(a) 0);
A0 1

it
[
{
I

(0 ¢(a) )=|
:7[H33(a)ﬂ+{HtS(d)112+4}"2J(max{1, lig(a)|iP*

H/\

fIA
oof =

{etfoll + (3{1811=+4)" *}(max{1, |iali})3
hence

SIS 2 e8]+ (2312 - )12y,

NI

By the Z-similarity of A, ¢, it completely bounded and
Heé.'i =1ig,11*. Then we have

2118}t e SHhdello 110
<| Leellall+ a4y [
SO

8l < juf £ L8]+ 3l )1 |

The right side of above inequality attains a minimum value
at t=2/(R2—1)1"%[ell. So |i€|{.; is dominated by the value

_é_(kf1({1+2/(k_1)}<k-1v2| 181, Then the functjon —;---.(kﬂ).

{1+2/(2-1)}%"V72 is monotone increasing for 2> 1, and

it takes a limit value e at infinity. Therefore
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By [5, Proposition 2.1] we have
d(z,$(4)) =518l
< IS ABID.
Thus the proof is compete.

Remark. The above proof is based on 74, Theorem 3.2].
By this theorem we can get better estimation than [4], that
is. any type II,-factor with property I has property Djq.

Now we show that £-similarity implies property D, But we
don’t know whether property D, imlies 2-similarity or not.
Though we shall show the following fact like proposition
€ for C*-algebras with property D,

ProrosiTiox 10. Let A and B be C¥-algebras.

(1) If AP B has property Dy, then so A and B have.
(2) If A and B have property D, then AE B has pro-
perty Dy,

Proor. (1) [t 1s obvious.

(2) Let ¢ be a =x-representation of ATE on a Hilbert
spaceé H and z be in B(H). Then p=4¢(1,0) and g=4¢(0, 1}
are the orthogonal projections with p+g=1. We denote by
P and ¢, the projections of orthogonal subspaces H; and
H- respectively. We define s-representations bv ¢,=d¢l, on
H,; and ¢,=¢|. on H. and we denote 6=9¢,%d,.

For any x:( T Tie Ve B(H®H,) and v=( % O )e:

LEp 222

S ADBY =6, (A) T¢.(B)’, we have
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”( T Ty )_( n 0 )‘: l Tn—y O ) (0 L2 )H
Ly T 0 ¥z I Q Loe— Y4 i
i R, —8 )]
‘ 0 Lap— Y2 l+l Lo 0 ’

=max{[[zy—yl], lzs—yll}+ ”ad(x)({l) g )H

So we get
d(z, $(ADB))< max {d(211,6,(A)"), d(Xy,$:(B)")}
+lad () scaanl!.

By the assumption of property D; for A and B,
d(z, (ADBY Y=< (k+Dllad (x)|o caemll-
Thus we conclude APB has property D;.,.
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