REALCOMPACT CONVERGENCE ORDERED SPACES

JUNG WAN NAM, HYO IL CHOI AND BAE HOON PARK

In this paper, we deal with the Wallman-type ordered realcompactification of a convex convergence ordered space which is a generalization of an ordered realcompactification of topological ordered space.

For a convex convergence ordered space (X, \leq, \rightarrow) , let $X^*=\{(d(x), i(x))|x\in X\}\cup\{(\mathcal{F}, \mathcal{G})|(\mathcal{F}, \mathcal{G}) \text{ is a maximal closed bifilter with the countable intersection property on } X \text{ such that } \mathcal{F}\vee\mathcal{G} \text{ fails to converge}\}, \text{ and give the convergence structure} \xrightarrow{*} \text{ on } X^* \text{ and order relation } \leq^* \text{ on } X^*.$ Then we obtain the Wallman-type ordered realcompactification $(X^*, \leq^*, \xrightarrow{*})$ for a convex convergence ordered space (X, \leq, \rightarrow) .

DEFINITION I. If \mathcal{F} (resp. \mathcal{G}) is a decreasing (resp. increasing) (closed) filter on X, then a pair $(\mathcal{F},\mathcal{G})$ is called a (closed) bifilter on X if $\mathcal{F} \vee \mathcal{G}$ exists where $\mathcal{F} \vee \mathcal{G}$ is the filter generated by $\{F \cap G | F \in \mathcal{F} \text{ and } G \in \mathcal{G}\}$. A bifilter $(\mathcal{F},\mathcal{G})$ on X is said to converge if the filter $\mathcal{F} \vee \mathcal{G}$ converges in X. If $\mathcal{F} \vee \mathcal{G}$ has an adherent point in X, then we say that the bifilter $(\mathcal{F},\mathcal{G})$ has an adherent point in X.

For $\mathcal{F} \in F(X)$, we denote by $i(\mathcal{F})$ the filter generated by $\{i(F)|F \in \mathcal{F}\}$ where i(F) is increasing set; the filters

 $d(\mathcal{F})$ and $c(\mathcal{F})$ are defined analogously.

A filter \mathcal{F} is called a *convex filter* if it has a filterbase of convex sets, i.e., $c(\mathcal{F}) = \mathcal{F}$. Note that \mathcal{F} is a convex filter iff $\mathcal{F} = i(\mathcal{F}) \vee d(\mathcal{F})$. The bifilter $(\mathcal{F}, \mathcal{G})$ is called *convex* if $\mathcal{F} \vee \mathcal{G}$ is a convex filter on X. A convergence ordered space (X, \leq, \rightarrow) is said to be *convex* if every convex bifilter converges in X.

Given a convergence ordered space (X, \leq, \rightarrow) , let $\Delta = \{(x, y) | x \leq y\}$ be the graph of the partial order \leq on X. For filters \mathcal{F}, \mathcal{G} on X, define $\mathcal{F} \otimes \mathcal{G}$ to mean that $(\mathcal{F} \times \mathcal{G}) \vee \Delta \neq \phi$, i.e., $(F \times G) \cap \Delta \neq \phi$ for $F \in \mathcal{F}$ and $G \in \mathcal{G}$.

DEFINITION 2. Let $(X \leq, \rightarrow)$ be a convergence ordered space. Then (X, \leq, \rightarrow) is said to be T_1 -ordered if $\mathcal{F} \longrightarrow x$, $\mathcal{F} \otimes \mathring{y}$ implies that $x \leq y$, and similarly, if $\mathcal{G} \longrightarrow x$, $\mathring{y} \otimes \mathcal{G}$ implies that $y \leq x$. If $x \leq y$ whenever $\mathcal{F} \longrightarrow x$, $\mathcal{G} \longrightarrow y$, and $\mathcal{F} \otimes \mathcal{G}$, then (X, \leq, \rightarrow) is defined to be T_2 -ordered.

DEFINITION 3. Let X and Y be convergence ordered spaces. If $f: X \longrightarrow Y$ is an order isomorphism and homeomorphic embedding, and if Y is compact and f(X) is dense in Y, then (Y, f) will be called a convergence ordered compactification of X.

DEFINITION 4. Let (X, \leq, \rightarrow) be a convergence ordered space. Then (X, \leq, \rightarrow) is called a *realcompact* convergence ordered space if every maximal closed bifilter with countable intersection property converges in X. In definition of a convergence ordered compactification of X, if Y is realcompact convergence ordered space then (Y, f) is called a convergence ordered realcompactification of (X, \leq, \rightarrow) .

In [6] and [7], a Wallman-type ordered compactification is given in the topological setting. These ideas are used here.

THEOREM 5. Let (X, \leq, \rightarrow) be a T_1 -ordered convergence space. Then for each $x \in X$, (d(x), i(x)) is a maximal closed bifilter with the countable intersection property.

PROOF. Suppose that $(\mathcal{F}, \mathcal{G})$ is a closed bifilter on X such that $(\dot{d}(x), \dot{i}(x)) \subseteq (\mathcal{F}, \mathcal{G})$. Then $\dot{d}(x) \subseteq \mathcal{F}$ and $\dot{i}(x) \subseteq \mathcal{G}$. If $F \in \mathcal{F}$ then there exists a decreasing closed set $F_1 \in \mathcal{F}$ with $F_1 \subseteq F$. Since F_1 is decreasing, $F_1 = d(F_1)$. We know that $d(F_1) \cap \dot{i}(x) \neq \phi$. Hence $x \in d(F_1)$.

It follows that $d(x) \subseteq d(F_1) \subseteq F$. Thus $F \in \dot{d}(x)$, so $\mathcal{F} \subseteq d(x)$. Similarly, $\mathcal{G} \subseteq \dot{i}(x)$. Therefore $(\dot{d}(x), \dot{i}(x))$ is a maximal closed bifilter. It is obvious that it has the countable intersection property.

From now on, the space is a T_1 -ordered convergence space. Let $X' = \{(\mathcal{F}, \mathcal{G}) | (\mathcal{F}, \mathcal{G}) \text{ is a maximal closed bifilter}$ with the countable intersection property on X such that $\mathcal{F} \vee \mathcal{G}$ fails to converge.

Define $X^*=\{(d(x), i(x))|x\in X\}\cup X' \text{ and an order relation} \leq^* \text{ on } X^* \text{ as follows: } (\mathcal{F}_1, \mathcal{G}_1)\leq^*(\mathcal{F}_2, \mathcal{G}_2) \text{ if and only if } \mathcal{F}_2\subseteq \mathcal{F}_1 \text{ and } \mathcal{G}_1\subseteq \mathcal{G}_2 \text{ for any } (\mathcal{F}_1, \mathcal{G}_1) \text{ and } (\mathcal{F}_2, \mathcal{G}_2) \text{ in } X^*. \text{ Then } (X^*, \leq^*) \text{ is a partially ordered set.}$

For given decreasing subset A and increasing subset B of (X, \leq) , we define the sets $A^d = \{(\mathcal{F}, \mathcal{G}) \in X^* | A \in \mathcal{F}\}$ and $B^i = \{(\mathcal{F}, \mathcal{G}) \in X^* | B \in \mathcal{G}\}.$

Let \mathcal{F} (resp. \mathcal{G}) be a decreasing (resp. increasing) filter on X. Then \mathcal{F}^{d} (resp. \mathcal{G}^{i}) denotes the filter on X^{*} whose

base is $\{F^{\epsilon}|F_{\epsilon}\mathcal{F}\}\ (\text{resp.}\{G^{\epsilon}|G\in\mathcal{G}\}).$

Definition 6. We define a convergence structure $\xrightarrow{*}$ on X^* as follows: For a filter \mathcal{H} on X^* ,

- (1) $\mathcal{H} \xrightarrow{*} (d(x), i(x))$ in X^* if and only if there exists a filter $\mathcal{F} \xrightarrow{} x$ in X such that $(d\mathcal{F})^{d} \vee (i\mathcal{F})^{i} \subseteq \mathcal{H}$;
- (2) $\mathcal{H} \xrightarrow{*} (\mathcal{F}, \mathcal{G})$ in X^* , $(\mathcal{F}, \mathcal{G}) \subseteq X'$ if and only if $\mathcal{F}^{d} \vee \mathcal{G}^{i} \subseteq \mathcal{H}$.

Then $(X^*, \leq^*, \xrightarrow{*})$ is called a convergence ordered space.

THEOREM 7. Let (X, \leq, \rightarrow) be a convergence ordered space. Then A = d(A) and $A \subseteq X$ is closed in X if A^d is closed in X^* .

PROOF. Suppose that A^d is closed in X^* . Let $x \in \overline{A}$. Then there exists a filter $\mathcal{F} \longleftarrow x$ such that $A \in \mathcal{F}$. Thus $(d\mathcal{F})^d \wedge (i\mathcal{F})^i \xrightarrow{*} (d(x), i(x))$ and $A^d \in (d\mathcal{F})^d$. Hence we have a filter $(d\mathcal{F})^d \vee (i\mathcal{F})^i \xrightarrow{*} (d(x), i(x))$ such that $A^d \in (d\mathcal{F})^d \vee (i\mathcal{F})^i$, that is, $(d(x), i(x)) \in \overline{A}^d = A^d$ and so $d(x) \subseteq A$, i.e., $x \in A$, since A is decreasing. Thus A is closed in X.

THEOREM 8. Let (X, \leq, \rightarrow) be a T_1 -ordered convergence space. Then $(X^*, \leq^*, \xrightarrow{*})$ is a realcompact convergence ordered space.

PROOF. Let $(\mathcal{H}, \mathcal{K})$ be a maximal closed bifilter with the countable intersection property, and $\mathcal{F}(\text{resp. }\mathcal{G})$ be the filter generated by $\{A \subseteq X | A^d \in \mathcal{H}, A = d(A)\}$ (resp. $\{B \subseteq X | B^i \in \mathcal{K}, B = i(B)\}$). Then \mathcal{F} (resp. \mathcal{G}) is a decreasing (resp. increasing) closed filter with the countable intersection property. If $F \in \mathcal{F}$, F = d(F) and $G \in \mathcal{G}$, G = i(G) then $F^d \in \mathcal{H}$ and $G^i \in \mathcal{K}$. Since $(\mathcal{H}, \mathcal{K})$ is a bifilter, $F^d \cap G^i \neq \phi$

and so we have some maximal closed bifilter $(M, \mathcal{R}) \in F^{d+1}$ G'. Hence $F \cap G \neq \emptyset$. Therefore $(\mathcal{F}, \mathcal{G})$ is a closed bifilter. Suppose that $(\mathcal{F}_1, \mathcal{G}_1)$ is a closed bifilter with the countable intersection property on X such that $(\mathcal{F}, \mathcal{G}) \subset (\mathcal{F}_1, \mathcal{G}_1)$. If $A = d(A) \in \mathcal{F}_1$ such that $A \notin \mathcal{F}$, then X - A is increasing and since i(x) is a increasing closed set for some $x \in X - A$, $X - A \in \mathcal{G} \subseteq \mathcal{G}_1$. It is contradiction to the fact $\mathcal{F}_1 \vee \mathcal{G}_1 \neq \emptyset$. Thus $(\mathcal{F}, \mathcal{G})$ is a maximal closed bifilter. If $\mathcal{F} \vee \mathcal{G} \longrightarrow x$ in X, then $(\mathcal{H}, \mathcal{H}) \xrightarrow{*} (d(x), i(x))$ in X^* , since $(\mathcal{F}^d, \mathcal{G}^i) \subseteq (\mathcal{H}, \mathcal{H})$. If $\mathcal{F} \vee \mathcal{G}$ fails to converge in X, then $(\mathcal{F}, \mathcal{G}) \in X'$ and so $(\mathcal{H}, \mathcal{H}) \xrightarrow{*} (\mathcal{F}, \mathcal{G})$ in X^* . Therefore $(X^*, \leq^*, \xrightarrow{*})$ is a realcompact convergence ordered space.

THEOREM 9. Let (X, \leq, \rightarrow) be a convex T_1 -ordered convergence space. Then the natural map $\phi: (X, \leq, \rightarrow) \longrightarrow (X^*, \leq^*, \xrightarrow{*})$ is a dense embedding.

PROOF. Suppose that $\mathcal{F} \longrightarrow x$ in X. Then $\phi(\mathcal{F}) \supseteq \phi(d\mathcal{F}) \vee i\mathcal{F} = i\mathcal{F$

By Theorem 8 and Theorem 9, we have the following.

THEOREM 10. Let (X, \leq, \rightarrow) be a convex T_1 -ordered convergence space. Then $(X^*, \leq^*, \xrightarrow{})$ is a realcompactification

of (X, \leq) .

Suppose that $(\mathcal{F}, \mathcal{G})$ and $(\mathcal{H}, \mathcal{H})$ are two bifilters. We define the relation \leq^* on X^* as follow: $(\mathcal{F}, \mathcal{G}) \otimes (\mathcal{H}, \mathcal{H})$ if $\mathcal{G} \vee \mathcal{H} \neq \phi$.

DEFINITION 11. Let (X, \leq, \rightarrow) be a T_1 -ordered (resp. T_2 -ordered) convergence space. Then (X, \leq, \rightarrow) is said to be strongly T_1 -ordered (reps. strongly T_2 -ordered) if

- (1) if $(d\mathcal{F}, i\mathcal{F}) \longrightarrow x$ and $(d\mathcal{F}, i\mathcal{F}) \otimes (\mathcal{H}, \mathcal{K})$, then $(\dot{d}(x), i\dot{(}x)) <^* (\mathcal{H}, \mathcal{K})$;
- (2) if $(d\mathcal{F}, i\mathcal{F}) \longrightarrow x$ and $(\mathcal{H}, \mathcal{K}) \otimes (d\mathcal{F}, i\mathcal{F})$, then $(\mathcal{H}, \mathcal{K}) \leq *(d(x), i(x))$.

THEOREM 12. Let (X, \leq, \rightarrow) be a convex convergence space. If X is strongly T_1 -ordered, then X^* is T_1 -ordered.

PROOF. Suppose that X is T_1 -ordered. Let $\mathcal{H} \xrightarrow{*} (d(x), i(x))$ and $\mathcal{H} \otimes (d(y), i(y))$. Then there exists a filter $\mathcal{F} \longrightarrow x$ such that $(d\mathcal{F})^d \vee (i\mathcal{F})^i \subseteq \mathcal{H}$, and so $(d\mathcal{F})^d \vee (i\mathcal{F})^i \otimes (d(y), i(y))$. It follows that $\{((dF)^d \cap (iF)^i) \times (d(y), i(y))\} \cap \Delta^* \neq \emptyset$ for each $F \in \mathcal{F}$, where Δ^* is the graph of order in X^* . This implies that there exists a maximal closed bifilter $(m, n) \leq * (d(y), i(y))$ such that $dF \in m$ and $iF \in n$ for each $F \in \mathcal{F}$. By definition of $\leq *$, $d(y) \subseteq m$ and $n \subseteq i(y)$. Thus $d(y) \in m$ and $iF \in n$ for each $iF \in \mathcal{F}$. Since (m, n) is a bifilter, $iF \cap d(y) \neq \emptyset$ for each $iF \in \mathcal{F}$. Hence we have a $iF \in m$ with $iF \in m$ for each $iF \in m$. This means that $iF \in m$ since $iF \in m$ in $iF \in m$ for each $iF \in m$. Thus $iF \in m$ for each $iF \in m$. Thus $iF \in m$ for each $iF \in m$. Thus $iF \in m$ for each $iF \in m$. Thus $iF \in m$ for each $iF \in m$. Thus $iF \in m$ for each $iF \in m$. Thus $iF \in m$ for each $iF \in m$. Thus $iF \in m$ for each $iF \in m$. Thus $iF \in m$ for each $iF \in m$. Thus $iF \in m$ for each $iF \in m$. Thus $iF \in m$ for each $iF \in m$. Thus $iF \in m$ for each $iF \in m$. Thus $iF \in m$ for each $iF \in m$. Thus $iF \in m$ for each $iF \in m$. Thus $iF \in m$ for each $iF \in m$. Thus $iF \in m$ for each $iF \in m$. Thus $iF \in m$ for each $iF \in m$. Thus $iF \in m$ for each $iF \in m$. Thus $iF \in m$ for each $iF \in m$ for each $iF \in m$. Thus $iF \in m$ for each $iF \in m$ f

 \mathcal{A} , then $(\dot{d}(y), \dot{i}(y)) \leq *(\dot{d}(x), \dot{i}(x))$. The natural map f is increasing.

Suppose that $\mathcal{H} \stackrel{*}{\longrightarrow} (\mathcal{F}, \mathcal{G}), (\mathcal{F}, \mathcal{G}) \in X'$ and $\mathcal{H} \otimes (d(x), i(x))$. Then $\mathcal{F}^d \vee \mathcal{G}^i \otimes (d(x), i(x))$. This means that there exists a maximal closed bifilter $(\mathcal{M}, \mathcal{N}) \in F^d \cup G'$ with $(\mathcal{M}, \mathcal{N}) \leq *$ (d(x), i(x)) for each $F \in \mathcal{F}$ and $G \in \mathcal{G}$. If $G \in \mathcal{G}$ then $G \in \mathcal{N} \subseteq i(x)$. Thus $G \subseteq i(x)$. Since $F \in \mathcal{M}$ and $d(x) \in \mathcal{M}$, $F \cap d(x) \in \mathcal{M}$. For $F \in \mathcal{F}$ and $G \in \mathcal{G}$, $d(x) \cap F \cap G \neq \emptyset$, since $(\mathcal{M}, \mathcal{N})$ is a maximal closed bifilter. Thus $d(x) \in \mathcal{F}$ and so $d(x) \subseteq \mathcal{F}$. Therefore $(\mathcal{F}, \mathcal{G}) \leq * (d(x), i(x))$. Similarly, if $\mathcal{H} \stackrel{*}{\longrightarrow} (\mathcal{F}, \mathcal{G})$ in X^* and $\mathcal{H} \otimes (\mathcal{F}, \mathcal{G})$, $(\mathcal{F}, \mathcal{G})$. $\in X'$ and $(d(x), i(x)) \otimes \mathcal{H}$, then $(d(x), i(x)) \leq * (\mathcal{F}, \mathcal{G})$.

Suppose that $\mathcal{H} \xrightarrow{*} (\mathcal{F}, \mathcal{G})$, $(\mathcal{F}, \mathcal{G}) \in X'$ and $\mathcal{H} \otimes (\mathcal{J}, \mathcal{T})$. Then $\mathcal{F}^d \vee \mathcal{G}^i \otimes (\mathcal{J}, \mathcal{T})$. It follows that there exists a maximal closed bifilter $(\mathcal{M}, \mathcal{N}) \in \mathcal{F}^d \cap G^i$ for each $F \in \mathcal{F}$ and $G \in \mathcal{G}$ such that $(\mathcal{M}, \mathcal{N}) \leq *(\mathcal{J}, \mathcal{T})$. If $S \in \mathcal{J}$, then $S \in \mathcal{M}$ and $S \cap F \in \mathcal{M}$. Since $(\mathcal{M}, \mathcal{N})$ is a maximal closed bifilter, $S \cap F \cap G \neq \emptyset$ for each $F \in \mathcal{F}$ and $G \in \mathcal{G}$. Thus $S \in \mathcal{F}$ and so $\mathcal{J} \subseteq \mathcal{F}$. If $G \in \mathcal{G}$ then $G \in \mathcal{N} \subseteq \mathcal{T}$. Thus $\mathcal{G} \subseteq \mathcal{T}$. Therefore $(\mathcal{F}, \mathcal{G}) \leq *(\mathcal{J}, \mathcal{T})$. Similarly, if $\mathcal{H} \xrightarrow{*} (\mathcal{F}, \mathcal{G})$, $(\mathcal{F}, \mathcal{G}) \in X'$ and $(\mathcal{J}, \mathcal{T}) \otimes \mathcal{H}$, then $(\mathcal{J}, \mathcal{T}) \leq *(\mathcal{F}, \mathcal{G})$.

Suppose that $\mathcal{H} \xrightarrow{*} (d(x), i(x))$ and $\mathcal{M} \otimes (\mathcal{S}, \mathcal{T}), (\mathcal{S}, \mathcal{T})$ $\in X'$. Then $\mathcal{F} \longrightarrow x$ and $(d\mathcal{F})^d \vee (i\mathcal{F})^i \otimes (\mathcal{S}, \mathcal{T})$. There exists a maximal closed bifilter $(\mathcal{M}, \mathcal{N}) \in (dF)^d \cap (iF)^i$ for each $F \in \mathcal{F}$ such that $(\mathcal{M}, \mathcal{N}) \leq *(\mathcal{S}, \mathcal{T})$. Since $iF \in \mathcal{N} \subseteq \mathcal{T}$ and $\mathcal{S} \subseteq \mathcal{M}$, $iF \cap S \neq \emptyset$ for each $F \in \mathcal{F}$ and $S \in \mathcal{S}$. Thus $(d\mathcal{F}, i\mathcal{F}) \otimes (\mathcal{S}, \mathcal{T})$. Since X is convex, $(d\mathcal{F}, i\mathcal{F}) \longrightarrow x$.

Therefore $(d(x), i(x)) \le *(\beta, \gamma)$. Similarly, if $\mathcal{H} \xrightarrow{*} (d(x), i(x))$ and $(\beta, \gamma) \otimes \mathcal{H}$, $(\beta, \gamma) \in X'$, then $(\beta, \gamma) \le *(d(x), i(x))$.

We conclude that $(X^*, \leq^*, \xrightarrow{})$ is a T_1 -ordered convergence space. It is obvious that if X^* is T_1 -ordered then X is T_1 -ordered.

THEOREM 13. Let (X, \leq, \rightarrow) be a convex convergence ordered space. If (X, \leq, \rightarrow) is strongly T_2 -ordered, then $(X^*, <^*, \stackrel{*}{\longrightarrow})$ is T_2 -ordered.

PROOF. Suppose that $\mathcal{H} \stackrel{*}{\longrightarrow} (d(x), i(x)), \ \mathcal{K} \stackrel{*}{\longrightarrow} (d(y), i(y))$ and $\mathcal{H} \otimes \mathcal{K}$. Then there exist $\mathcal{F} \longrightarrow x$, $\mathcal{G} \longrightarrow y$ such that $(d\mathcal{F})^d \vee (i\mathcal{F})^i \otimes (d\mathcal{G})^d \vee (i\mathcal{G})^i$. Thus we have two maximal closed bifilters $(\mathcal{M}, \mathcal{N}) \in (dF)^d \cap (iF)^i$ and $(\mathcal{J}, \mathcal{T}) \in (dG)^d \cap (iG)^i$ such that $(\mathcal{M}, \mathcal{N}) \leq^* (\mathcal{J}, \mathcal{T})$ for each $F \in \mathcal{F}$ and $G \in \mathcal{G}$. It follows that $dF \in \mathcal{M}$, $iF \in \mathcal{N}$, $dG \in \mathcal{J}$ and $iG \in \mathcal{T}$, and $\mathcal{J} \subseteq \mathcal{M}$, $\mathcal{N} \subseteq \mathcal{T}$. Thus $dG \in \mathcal{J} \subseteq \mathcal{M}$ and $iF \in \mathcal{N}$. This means that $iF \cap dG \neq \phi$ for each $F \in \mathcal{F}$ and $G \in \mathcal{G}$. Therefore $\mathcal{F} \otimes \mathcal{G}$. Since X is T_2 -ordered, $x \leq y$ and so $(\hat{x}(x), \hat{x}(x)) \leq^* (\hat{d}(y), \hat{x}(y))$.

Suppose that $\mathcal{H} \xrightarrow{*} (d(x), i(x)), \mathcal{K} \xrightarrow{*} (\mathcal{J}, \mathcal{T}), (\mathcal{J}, \mathcal{T}) \in X'$ and $\mathcal{H} \otimes \mathcal{K}$. Then there exists $\mathcal{F} \longrightarrow x$ with $(d\mathcal{F})^d \vee (i\mathcal{F})^! \subseteq \mathcal{H}$, and $\mathcal{J}^a \vee \mathcal{T}^! \subseteq \mathcal{K}$. For each $F \in \mathcal{F}$, $S \in \mathcal{J}$ and $T \in \mathcal{T}$, $\{\{(dF)^d \cap (iF)^i\} \times \{S^d \cap T^i\}\} \cap A^* \neq \phi$ and so there exist $(\mathcal{M}, \mathcal{N}) \in (dF)^d \cap (iF)^i$ and $(\mathcal{U}, \mathcal{V}) \in S^d \cap T^i$ such that $(\mathcal{M}, \mathcal{N}) \leq *(\mathcal{U}, \mathcal{V})$. Since $iF \in \mathcal{N} \subseteq \mathcal{V}$ and $S \in \mathcal{U} \subseteq \mathcal{M}$, $i\mathcal{F} \vee S \neq \phi$ by definition of a bifilter $(\mathcal{U}, \mathcal{V})$. Hence $(d\mathcal{F}, i\mathcal{F})$ $\otimes (\mathcal{J}, \mathcal{T})$ and $(d\mathcal{F}, i\mathcal{F}) \longrightarrow x$. It follows that (d(x), i(x))

 $\leq^* (\mathcal{J}, \mathcal{T}).$

Suppose that $\mathcal{H} \xrightarrow{*} (\mathcal{F}, \mathcal{G})$, $\mathcal{H} \xrightarrow{*} (\mathcal{L}, \mathcal{T})$ and $(\mathcal{F}, \mathcal{G})$, $(\mathcal{L}, \mathcal{T}) \in X'$ and $\mathcal{H} \subseteq \mathcal{H}$. Then $\mathcal{F}^{a} \vee \mathcal{G} \subseteq \mathcal{H}$ and $\mathcal{J}^{d} \vee \mathcal{T}^{i} \subseteq \mathcal{H}$. We have $(\mathcal{M}, \mathcal{N}) \in F^{d} \cap G'$ and $(\mathcal{U}, \mathcal{V}') \in S^{d} \cap T'$ with $(\mathcal{M}, \mathcal{N}) \leq *(\mathcal{U}, \mathcal{V}')$ for each $F \in \mathcal{F}$, $G \in \mathcal{G}$, $S \in \mathcal{J}$ and $T \in \mathcal{T}$. If $S \in \mathcal{J}$ then $S \in \mathcal{U} \subseteq \mathcal{M}$. Thus $S \cap F \cap G \neq \emptyset$ for each $F \in \mathcal{F}$ and $G \in \mathcal{G}$, and so $S \in \mathcal{F}$. If $G \in \mathcal{G}$ then $G \in \mathcal{N} \subseteq \mathcal{V}$. Thus $G \cap S \cap T \neq \emptyset$ for each $S \in \mathcal{J}$ and $T \in \mathcal{T}$. Hence $G \in \mathcal{T}$. Therefore $(\mathcal{F}, \mathcal{G}) \leq *(\mathcal{J}, \mathcal{T})$.

Suppose that $\mathcal{H} \stackrel{\sim}{\longrightarrow} (\mathcal{S}, \mathcal{T})$, $(\mathcal{S}, \mathcal{T}) \in X'$, $\mathcal{K} \stackrel{\sim}{\longrightarrow} (d(x), i(x))$ and $\mathcal{H} \otimes \mathcal{K}$. Then there exists $\mathcal{F} \longrightarrow x$ with $(d\mathcal{F})^{\circ} \vee (i\mathcal{F})^{\circ} \subseteq \mathcal{K}$ and $\mathcal{S}^{\circ} \vee \mathcal{T}^{\circ} \subseteq \mathcal{H}$. For each $F \in \mathcal{F}$, $S \in \mathcal{S}$, and $T \in \mathcal{T}$, there exist $(\mathcal{M}, \mathcal{N}) \in S^d \cap T^{\circ}$ and $(\mathcal{U}, \mathcal{V}) \in (dF)^{\circ} \cap (iF)^{\circ}$ with $(\mathcal{M}, \mathcal{N}) \leq^* (\mathcal{U}, \mathcal{V})$. It follows that $S \in \mathcal{M}$, $T \in \mathcal{N}$, $dF \in \mathcal{U}$, $iF \in \mathcal{V}$, $\mathcal{U} \subseteq \mathcal{M}$, and $\mathcal{N} \subseteq \mathcal{V}$. Thus $dF \vee \mathcal{T} \neq \phi$, and so $(\mathcal{S}, \mathcal{T}) \otimes (d\mathcal{F}, i\mathcal{F})$. Hence $(\mathcal{S}, \mathcal{T}) \leq^* (d(x), i(x))$. We conclude that X^* is T_2 -ordered.

References

- 1 Gazik, R. J., B. H. Park and G. D. Richardson, A Wallmantype compactification for convergence Space, Proc. Amet. Math. Soc. 92 (1984), 301-304.
- 2. D.C. Kent, Convergence functions and their related topologies, Fund. Math. 54 (1964), 125-133.
- 3. C.C. Kent, and G.D. Richardson, T-regular-closed convergence spaces, Proc. Amer. Math. Soc. 51 (1975), 461-468.
- 4. ______, Compactifications of convergence spaces, Internat. J. Math. and Math. Sci. 2 (1979), 345-368.
- 5. _____, A compactification for convergence ordered

spaces, Canad. Math. Bull. 27 (1984), 505-513.

- 6. B.H. Park, On Wallman-type extension, Kyungpook Math. J. 19 (1979), 183-191.
- 7. Y.S. Park, Ordered topological spaces and topological semilattices, Ph. D. Thesis 1977, McMaster.
- 8. Vinod-Kumar, On the largest Hausdorff compactification of a Hausdorff convergence space, Bull. Austral. Math. Soc. 16 (1979), 189-197.
- 9. _____, Compactification of a convergence space, Proc. Amer. Math. Soc. 81 (1979), 256-262.
- 10. S. Willard, General Topology, Addison-Wesely Pub., 1970.

Gyeongsang National University Jinju 660-300 Korea

Kyungnam University Masan 630-701 Korea

and

Korea National University of Education Cheongju 360 Korea

Received August 25, 1987