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ON SUBCLASSES OF UNIVALENT FUNCTIONS
WITH NEGATIVE COEFFICIENTS

OSMAN ALTINTAS AND SHIGEYOSHI Owa

Abstract

In this work we obtain inequalities for coefficients re-
jated to functions belonging 10 two subclasses of univalent
functions with negative coefficients, bounds for the mo-
dulus of these functions and their derivatives, and the
extreme points of these classes. We also show an applica-

tion of functions belonging to these classes to the fractional
calculus.

1. Introduction

Let A denote the class of functions of the form
(1.1) f(z):z+§2a,,z"

which are analytic in the unit disk E={z :|z] < 1}. Then
a function f(z) belonging to A is said to be starlike of
order o if and only if

(1.2) Re{z—}F('z()L)ba
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for some o (0=« < 1), and for all z=E. We denote by
S*(ot) the subclass of A consisting of all starlike functions
of order « in the unit disk E. Further, a function f(2)
belonging to A is said to be convex of oerder o if and only
if

zf"(2)
(1.3) Re{1+—fW-}>a

for some o (0= ex < 1), and for all z€E. Also we denote
by K(a) the subclass of A consisting of functions which
are convex of order o in the unit disk E.

Let 7" be the subclass of A consisting of the form

(1.4) f(z>=z—§2a,z» (@, = 0).

Further, let

(L.5) T*(a)=S*(a)NT (0= a 1)
and
(1.6) Cla)=K(a)NT (0 < a<1).

The classes T*(at) and C(at) were introduced by Silver-
man 3],

Let T(2, o) be the subclass of 7' consisting of functions
which satisfy the condition

1.7 R zf"(z)

D e{ azf(z)+(1~2) f(z) }>a

for some ¢ (0 a<Cl), 2 (0= 2< 1), and for all z&E.
Let C(2, a) denote the subclass of 7' consisting of all

functions satisfying the following condition



ON SUBCLASSES OF UNIVALENT 43

(2)+=2f (=

(1.8) R Jf/ ((Z))sz >
for some @ (0= a<1), 2 (0=<2< 1), and for all z&E.

Note that T(0,a)=T*(a) and C0, a)=C(«x), and that
F(2)eC(4, a) if and only if 2f(2)ET(2, ).

Silverman [31 has obtained coefficient inequalities, extreme
points for the classes 7(0, @) and C(0, &), the radii of con-
vexity of functions in the class 7°(0,a), and the order of
of starlikeness of functions in C(0, a).

In the present paper, the results by Silverman [3] are
generalized to the classes T(2, @) and C(2, o).

2. Modulus of furction in T (i, «) and C(3, )
We begin with the statement and the proof of the follow-
ing result.
TeEOREM 1. A function f(z) defined by (1.4) is in the

class T(2, a) if and only if

(2.1) f: (n—ian—o+io)a, < 1—a.

®=2

The result (2.1) is sharp.

Proor. Suppose that f(z)eT (1, a). Then we have from
(1.7) that

2.2)  Rej——; -2l !

1——§ na,z" !
= Re[ - #=2 —— ]
1-3 (in+1—-Da,z"?

n=2

> o
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If we choose z real and let z—17, we get

1~§ na,
(2.3) -
1—§2(2n+1~2)a,,

1\

(24

which is equivalent to (2.1).
Conversely, suppose that (2.1) holds true. Then, adding

~(~a)F (an+1-Da,

to both sides of (2.1), we obtain

On the other hand, we see that

zf'(2) _
e e O Py P |

-2 & (=1,

1-5 Gr+1-2a,z

1-2 % (n=1)a,
T 1-% Gnt1-Da, '

It follows from (2.4) that the last expression in (2.5) is
bounded above by (1l—a). This implies f(z)&T(, a).
Finally, taking the function

_ -« =
(2.6) flz)=z- n-ian—a+ic - (n22),

We can show that the result (2.1) is sharp.
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CoroLLARY 1. If f(z)e<=T{(2, &), then

l-«
. < - = 2).
(2.7) U S TR (n=2)

The equality in (2.7) holds for the function f(z) defined
by (2.6).

THEOREM 2. A function f(z) defined by (1.4) 1is in the
class C(a, ) if and only if

(2.8) z]zn(n-—lan-—a—l-la)a,, =1l-a.
The result (2.8) is sharp.

- » /
Proor. Nete that F(=)=C(i «) if and only H =f'(2)E

T'(4, ). Hence, replacing @, by na, in Theorem 1, we have
the inequality (2.8). Furthermore, the result (2.8) is sharp
for the function

R 1-a _on
(2.9) f(2)==2 n(n—zom—a+2a)z (n = 2).

CoroLLARY 2. 1f f(2)eC(1, @), then

11—«
< =
(2.10) a,= e 70 (n = 2).

The equality in (2.10) holds for the function f(z) defined
by (2.9).

Applying Theorem 1, we prove

TeeEOREM 3. If f(2)eT(X,«a), then

I 1-o 2
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and

2(1—ot) , 2(1—a)
(2.12) l'——z_—z‘x—_“a—réif R)|=1+ 2 la—o r

for [z|=7 < 1. The equalities in (2.11) and (2.12) hold
for the function

1l—a 2
2—0— *

2.13) f(z)=2—

Proor. In view of Theorem 1, we have
@218 C-ia-o)f a5 5 (r-tantia-wa, S1-a

or

& l—a
<
(2. 15) ”Z:zau = 2 2 ! : -

Using (2.15), we obtain

(2.16) SN = 2|+ lzlz,g“»é’”*“f—“"l;ag:a_rz
and
@17 (Sl zlkl-krEazr-5 1t

Next, it follows from (2.1) and (2.15) that
2.18)  (1-)% e, < 1-a+(1-Dak a,
or

2(1-)
(2.19) Z: na, < S

This derives that

(2.20) [ F ()£ 1+ 2| 2 na, = 1+¢_22(1da)a
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and

2.21)  1f7()1z -]zl % na, = 1- zi_(‘lz;f)a 4

Further, with the help of Theorem 2, we have

THeoreM 4. If f(2)eC(, &), then

_ l-a 5 < pp_ d—a
2.2) o smTa—ay =SVOIET T
and
_ l-w <| o)< e Lm0 o
(2.23)  1-— — =l f'@Islt5 5

for |zj=r<l. The eqgualities in (2.22) and (2.23) Iold for

the function

@2.20)  ()=m—ypii e oot

ProofF. Since f(2)&C(2, ) if and only if 2f/(2)&T(2, a),
(2.23) follows from (2.11). By using (2.8), we have

. = l—«
o
(2.25) :.Z=:za"‘ 22— 20t —et)

Therefore, we can see that
S l-« 9
<7 A 2 < 4y
and

N ez _ l—a 2
@.20) 1 f@)ziel~lol £ ay 2 r- g 5L o
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3. Properties of T(4, ) and C(2, &)

By using Theorem 1 and Theorem 2, we prove
THeorEM 5. If f(2)&=C(4, ), then

f(Z)GT(1> 3_%;32;:(1 )

The result is sharp with the extremal function f{z) given
by (2.24).

Proor. By virtue of Theorem 1 and Theorem 2, we have
to show that if

1§ reslantien) o

”n

then

oan—(n—2+1){(2—-22a)/(3—ia—21—a)}
G.2) I T3 %) B0 —1—0) @ =1L

In order to show the above, we must have the following

inequality

(3.3) n—Qn—2+1D{(2—-2ia)/(3—ia—2—o)}
) 1-2—220)/(3—2a—i—ax)

< n(n—2an+id—-a)
- l-a

for » = 2. But the above inequality is equivalent to
(3.4) (1—2)(1-2a0)(#n?—=3n+2) =20 (n=2)

which is always true. Hence we complete ithe proof of
Theorem 5.

Next, we prove
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THEOREM 6. 1If f(2)eT (A, ), then f(2)&C(20) in the
disk {2|<r; <1, where

L n—2ian+ o—ol \1/¢D
@5  n=ing(Aoigrilaca)TEn

The result is sharp with the extremal function f(2) given

by (2.6).
Proor. With the aid of Theorem 1, we have

1

A

1—o

for f(x)&T (4, a). Itis clear that f(z)eC(1,0) if

3.7 [ (A=0=2f"(z) |4
GD e
If
(1-1) i n(n—1)a,lzl"1
(3.8) —— . =1
1— f}zn(1+2n-—2)a,,lz[""
or

3.9)  Lralil,

then (3.7) holds true. Therefore, we see that (3.7) is
satisfied if

. o), |n-1 < AAn+io—a
(3.10) Azl < T—a

or

(3.11)  |z| g( n—lan+ e —ol )1/(n-1)
o 1-a .
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THeorEM 7. Let

(3.12)  fi(z)=z2

and

— l-«a ”
(3. 13) fo(2)==2 P P P (n = 2).

Then f(2)&T (2, a) if and only if

314 f()=Z k. ful=),

where £, = 0 and f} k.=1.
a=1

Proor. Suppose that (3.14) is satisfied. Then we have

o) = — 3 l—a “
(3.15) F(2)=2 ,?-::zk" n—ian+ia—a ~

hd
=z—3 a,z"
n=32
where

- 1-a >
(3.16) a,=k, PR P P (n=2).

It follows from (3.16) that

(3.17) i n—Axkn+ Ad—o an:___ﬁ ka=1~k < 1.

This implies that f(2)&T(2, &) with the help of Theorem 1,

Conversely, suppose that f(2)=T(2, &). Then, by Theo-
rem 1, we may put

(3.18) k= TTAERHAATA , (29

and
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(3.19) fe1:1~i:2k,,,
Consequently, we can see that

(3.20) f(z):z-—i2 a,z"

< I—a
=2 k Potid
= Ez "n—lan+ic—a
=21 k, fo(2)

which completes the proof of Theorem 7.

With the help of Theorem 7, we have

CoroLLARY 3. The extreme points of 7T(2, ) are the fun-
ctions f,(z) (n = 1) defined in Theorem 7.

Similarly, we have

CoroLLARY 4. The extreme points of C(2,a) are the
functions f;{(z)=2 and

— l—a ,
3.21) fu()==z A= Tant 1) ® (n = 2).

4, Application to the fractional calculus

The following definitions of the fractional calculus {(frac-
tional integrals and fractional derivatives) due to Owa

([13, [21).

DeFINITION 1. The fractional integral of order § is defined
by

(4. D Dz—df(z): Fga) J: (zf;(ggl-ﬁ dé‘,
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where 6 > 0, f(z) is an analytic function in a simply con-
nected region of the z-plane containing the origin, and the
multiplicity of (z—§)?"! is removed by requiring log(z—¢)
to be real when (2—&) > 0.

DerINITION 2. The fractional derivative of order § is
defined by

P _ 1 d [+ f©
4.2 DA =iy i |, apr %

where 08 <1, f(2) is an analytic function in a simply
connected region of the z-plane containg the origin, and
the multiplicity of (2—&¢)™® is removed by requiring
log{z—L) to be real when (2—) > Q.

DerINITION 3. Under the hypotheses of Definition 2, the
fractional derivative of order (n+3) is defined by

(4.3) D f(z)=

where 058 < 1 and #n=N,={0,1,2, ---}.
Applying the above definitions, we prove

THEOREM 8. If f(2)&T{(4 o), then

. p1+ 2(1—a)
@.a) DDz pn s {1 @18y @—2a—a) 7}

and

4.5 ID e f()I=

il 2(1—- o)
r(2+3) {” 18— 1a—a) }

for 6 >0 and |zj=7'<1. The equalities in (4.4) and (4.5)
are attained for the function f(2) given by (2.13).

Proor. It is easy to see that
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(4.6) I+ D () =25 ﬂ%ﬁ{l‘fg@) azn

Defining ¢(#) by

we know that ¢(n) is a decreasing function of =z, that is,
that

(4.8)  0< 4w ¢ =gis.

Thus, by using (2.15) and (4.8), we have
(4.9) \7(2+8)27°D, " f(2)|| = |zl —$(2) |22 T a,

n=2

_ 2(1—a)
= (249) (2—,1a—-oz)r2

which gives (4.4), and
4.10)  IT@+8) =D, f(=)iZ =l + (D)l £ o,

2(1—a)
AR T IS )

72

which shows (4.5). Further, the equalities in (4.4) and
(4.5) are attained for the function f(z) defined by

., o gve _ 2(1—at)
(4.11) D, f(z)~7zm)~-{l 2 82— 2a—-a) 2}’

or, defined by (2.13).
Using the same manner with (2.25), we have

THEOREM 9. 1f f(z)eC(1, a), then

» et 11—
(4.12) |D, f(z)F;“T(—zjr“g)—{l“ (2-;-3)(2—2a~a)_r}
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and

] -5 i 1~
(4.13) 1D, f(z)|= T2+ {l+ 2+8)(2—-ia—a) r}

for 6 > 0 and |z]=7r < 1. The equalities in (4.12) and (4. 13)
are attained for the function f(z) given by (2.24).
Next, we prove

THEOREM 10. If f(2)=T (1, &), then

rl"y _ Z(l_a)
(4.19) IDSf(»)iz= =% {1 2-8)(2—2a—a) r}
and
) ri-¢ 2(1—a)
415 IDASEIS g {it T i) |

for 06 <1 and |2[=7 < 1. The equalities in (4. 14) and
(4.15) are attained for the function f(z) given by (2.13).

Proor. It is clear that

(4.16)  I'@=8)2"D . f(m) =z~ FLEIDIED) 400

=z— i ¢(n)na,z",
where
A1) d(n)= f}%%_:;)l-.

Since ¢(n) is decreasing in 7, we have

4.18)  0< P 9@ =51

Therefore, with the aid of (2.19) and (4. 18), we show that
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il

(4.19) |17 (2=8)2*D.f(2)| =1zl —¢(2) |=? gmu

. 20-w)
2T s a—a)

which is equivalent to (4.14), and

(4.20)  \F(@2=8)2"Df(2)I<Izl +4 @)zl 1 na,
2(1—a)
SRy ey
which gives (4.15). Furthermore, since the equalities in

(4.14) and (4.15) are attained for the function f(2) defined
by

I _ 2(1—a) '
(4.21) sz(z)——,r(z":gT{l 2= @—i1a—a) z}’

we complete the proof of Thearem 10.
Remarx 1. Letting €=0 in Theorem 10, we have (2.11) of

Theorem 3, and letting § —»1 in Theorem 10, we have (2.12)
of Theorem 3.

Finally, we have

TueoreM 11 If f()eC(i @), then

ri=?¢ l-a \
“.22)  IDSADz oy {1_ omne=ia=a "l
and
. . y1-6 l—a
4.23) D, f(z)lém {H‘ 2—8)(2—ia—~a) r}

for 086 <1and |lzl=r<1. The equalities in (4.22) and
(4.23) are attained for the function f{z) given by (2.24).

REMARK 2. Taking 8=0, Theorem 11 becomes (2.22) of
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Theorem 4. Further, letting §—1 in Theorem 11, we have
(2.23) of Theorem 4.
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